Home
Class 12
MATHS
(d)/(dx)[log(sqrt((1+sinx)/(1-sinx)))]=...

`(d)/(dx)[log(sqrt((1+sinx)/(1-sinx)))]=`

A

`cscx`

B

`tanx`

C

`cosx`

D

`secx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \(\frac{d}{dx}\left[\log\left(\sqrt{\frac{1+\sin x}{1-\sin x}}\right)\right]\), we will follow these steps: ### Step 1: Simplify the expression inside the logarithm We start with the expression: \[ \log\left(\sqrt{\frac{1+\sin x}{1-\sin x}}\right) \] Using the property of logarithms, \(\log(\sqrt{a}) = \frac{1}{2}\log(a)\), we can rewrite it as: \[ \frac{1}{2} \log\left(\frac{1+\sin x}{1-\sin x}\right) \] ### Step 2: Differentiate the logarithmic expression Now, we differentiate: \[ \frac{d}{dx}\left[\frac{1}{2} \log\left(\frac{1+\sin x}{1-\sin x}\right)\right] \] Using the chain rule, we have: \[ \frac{1}{2} \cdot \frac{1}{\frac{1+\sin x}{1-\sin x}} \cdot \frac{d}{dx}\left(\frac{1+\sin x}{1-\sin x}\right) \] ### Step 3: Differentiate the fraction \(\frac{1+\sin x}{1-\sin x}\) We will use the quotient rule for differentiation, which states that if \(u = 1 + \sin x\) and \(v = 1 - \sin x\), then: \[ \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{u'v - uv'}{v^2} \] Calculating \(u'\) and \(v'\): - \(u' = \cos x\) - \(v' = -\cos x\) Now applying the quotient rule: \[ \frac{d}{dx}\left(\frac{1+\sin x}{1-\sin x}\right) = \frac{(\cos x)(1 - \sin x) - (1 + \sin x)(-\cos x)}{(1 - \sin x)^2} \] Simplifying the numerator: \[ \cos x(1 - \sin x) + \cos x(1 + \sin x) = \cos x(1 - \sin x + 1 + \sin x) = \cos x(2) = 2\cos x \] Thus, we have: \[ \frac{d}{dx}\left(\frac{1+\sin x}{1-\sin x}\right) = \frac{2\cos x}{(1 - \sin x)^2} \] ### Step 4: Substitute back into the derivative Now substituting back into our derivative: \[ \frac{1}{2} \cdot \frac{1}{\frac{1+\sin x}{1-\sin x}} \cdot \frac{2\cos x}{(1 - \sin x)^2} \] This simplifies to: \[ \frac{1}{2} \cdot \frac{1 - \sin x}{1 + \sin x} \cdot \frac{2\cos x}{(1 - \sin x)^2} = \frac{\cos x (1 - \sin x)}{(1 + \sin x)(1 - \sin x)^2} \] The \((1 - \sin x)\) cancels out: \[ \frac{\cos x}{(1 + \sin x)(1 - \sin x)} = \frac{\cos x}{\cos^2 x} = \sec x \] ### Final Answer Thus, the final answer is: \[ \frac{d}{dx}\left[\log\left(\sqrt{\frac{1+\sin x}{1-\sin x}}\right)\right] = \sec x \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

d/dx[sqrt((1+sinx)/(1-sinx))]

(d)/(dx)log[sqrt((1-cos x)/(1+cos x))]=

[(d)/(dx)[log sqrt((1-cos2x)/(1+cos2x))]

d/(dx)[log (sqrt(sin sqrt(e^(x))))]=

(d)/(dx)[log(sec x+tan x)]=

(d)/(dx)((log x)/(sin x))=

Salve: (d)/(dx)(log sqrt(x))

d/(dx)e^(log sqrt(x)}=

(d)/(dx)[log(cos h(2x))]=

(d)/(dx)(log*sin x)