Home
Class 12
MATHS
If :y=sqrt((1+e^(x))/(1-e^(x)))," then: ...

If :`y=sqrt((1+e^(x))/(1-e^(x)))," then: "(dy)/(dx)=`

A

`(e^(x))/((1-e^(x))*sqrt(1-e^(2x)))`

B

`(e^(x))/((1-e^(x))*sqrt(1-e^(x)))`

C

`(e^(x))/((1-e^(x))*(1+e^(2x)))`

D

`(e^(x))/((1-e^(x))*sqrt(1+e^(x)))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \sqrt{\frac{1 + e^x}{1 - e^x}} \), we will use the chain rule and the quotient rule. Here’s the step-by-step solution: ### Step 1: Rewrite the function We can express \( y \) in a more manageable form: \[ y = \left( \frac{1 + e^x}{1 - e^x} \right)^{1/2} \] ### Step 2: Apply the chain rule Using the chain rule, we differentiate \( y \): \[ \frac{dy}{dx} = \frac{1}{2} \left( \frac{1 + e^x}{1 - e^x} \right)^{-1/2} \cdot \frac{d}{dx} \left( \frac{1 + e^x}{1 - e^x} \right) \] ### Step 3: Differentiate the quotient Now we need to differentiate \( \frac{1 + e^x}{1 - e^x} \) using the quotient rule. The quotient rule states that if \( u = f(x) \) and \( v = g(x) \), then: \[ \frac{d}{dx} \left( \frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Here, \( u = 1 + e^x \) and \( v = 1 - e^x \). Calculating \( \frac{du}{dx} \) and \( \frac{dv}{dx} \): \[ \frac{du}{dx} = e^x, \quad \frac{dv}{dx} = -e^x \] Now applying the quotient rule: \[ \frac{d}{dx} \left( \frac{1 + e^x}{1 - e^x} \right) = \frac{(1 - e^x)e^x - (1 + e^x)(-e^x)}{(1 - e^x)^2} \] ### Step 4: Simplify the numerator Expanding the numerator: \[ (1 - e^x)e^x + (1 + e^x)e^x = e^x - e^{2x} + e^x + e^{2x} = 2e^x \] So we have: \[ \frac{d}{dx} \left( \frac{1 + e^x}{1 - e^x} \right) = \frac{2e^x}{(1 - e^x)^2} \] ### Step 5: Substitute back into the derivative Now substituting this back into our expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{1}{2} \left( \frac{1 + e^x}{1 - e^x} \right)^{-1/2} \cdot \frac{2e^x}{(1 - e^x)^2} \] ### Step 6: Simplify the expression The expression simplifies to: \[ \frac{dy}{dx} = \frac{e^x}{(1 - e^x)^2} \cdot \left( \frac{1 - e^x}{1 + e^x} \right)^{1/2} \] ### Final Result Thus, the derivative is: \[ \frac{dy}{dx} = \frac{e^x}{(1 - e^x)^{3/2} \cdot (1 + e^x)^{1/2}} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If y=sqrt((1+e^(x))/(1-e^(x))), show that (dy)/(dx)=(e^(x))/((1-e^(x))sqrt(1-e^(2)x))

If y=e^(x)+e^(-x)," then: "(dy)/(dx)=

If y=e^(x)+e^(-x)," then: "(dy)/(dx)=

If let y=cos^(-1)((1-e^(2x))/(1+e^(2x)))" then "(dy)/(dx)=

if y=(e^(x))/(1+e^(x)) find (dy)/(dx)

If y=e^(x^(2)/(1+x^(2))) , then (dy)/(dx)=

If y =( e^(x) + 1)/( e^(x)) ,then (dy)/(dx) =

If y=e^(x+e^(x+e^(x+..."to"oo)))," then: "(dy)/(dx)=

If y=e^(x+e^(x+e^(x+..."to"oo)))," then: "(dy)/(dx)=

If y=e^(sqrt(x))+e^(-sqrt(x))," then "(dy)/(dx) is equal to