Home
Class 12
MATHS
(d)/(dx)[tan^(-1)(cotx)+cot^(-1)(tanx)]=...

`(d)/(dx)[tan^(-1)(cotx)+cot^(-1)(tanx)]=`

A

0

B

1

C

`-1`

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \(\frac{d}{dx}\left[\tan^{-1}(\cot x) + \cot^{-1}(\tan x)\right]\), we will differentiate each term separately using the chain rule and the derivatives of inverse trigonometric functions. ### Step 1: Differentiate \(\tan^{-1}(\cot x)\) The derivative of \(\tan^{-1}(u)\) with respect to \(x\) is given by: \[ \frac{d}{dx}[\tan^{-1}(u)] = \frac{1}{1 + u^2} \cdot \frac{du}{dx} \] where \(u = \cot x\). Now, we need to find \(\frac{du}{dx}\): \[ \frac{d}{dx}[\cot x] = -\csc^2 x \] Now, substituting \(u = \cot x\): \[ \frac{d}{dx}[\tan^{-1}(\cot x)] = \frac{1}{1 + \cot^2 x} \cdot (-\csc^2 x) \] Using the identity \(1 + \cot^2 x = \csc^2 x\): \[ \frac{d}{dx}[\tan^{-1}(\cot x)] = \frac{-\csc^2 x}{\csc^2 x} = -1 \] ### Step 2: Differentiate \(\cot^{-1}(\tan x)\) The derivative of \(\cot^{-1}(u)\) with respect to \(x\) is given by: \[ \frac{d}{dx}[\cot^{-1}(u)] = -\frac{1}{1 + u^2} \cdot \frac{du}{dx} \] where \(u = \tan x\). Now, we need to find \(\frac{du}{dx}\): \[ \frac{d}{dx}[\tan x] = \sec^2 x \] Now, substituting \(u = \tan x\): \[ \frac{d}{dx}[\cot^{-1}(\tan x)] = -\frac{1}{1 + \tan^2 x} \cdot \sec^2 x \] Using the identity \(1 + \tan^2 x = \sec^2 x\): \[ \frac{d}{dx}[\cot^{-1}(\tan x)] = -\frac{\sec^2 x}{\sec^2 x} = -1 \] ### Step 3: Combine the derivatives Now, we can combine the derivatives from Step 1 and Step 2: \[ \frac{d}{dx}\left[\tan^{-1}(\cot x) + \cot^{-1}(\tan x)\right] = -1 - 1 = -2 \] ### Final Answer \[ \frac{d}{dx}\left[\tan^{-1}(\cot x) + \cot^{-1}(\tan x)\right] = -2 \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)[tan^(-1)(cosecx+cotx)]=

(d)/(dx)[sec(tan^(-1)x)]=

(d)/(dx)[tan^(-1)((2+3tanx)/(3-2tanx))]=

(d)/(dx)(tan^(-1)(birth x))

At x=(pi)/(4),(d)/(dx)[tan^(-1)((cosx)/(1+sinx))]=

(d)/(dx)[tan^(-1)[(secx-tanx)]=

d/(dx) [tan^(-1)(sqrt(x))] =

(d)/(dx)[tan^-1((sqrt(1+x^(2))-1)/(x))]=

(d)/(dx)[tan^(-1)sqrt(1+x^(2))-cot^(-1)(-sqrt(1+x^(2)))]=

(d)/(dx)[tan{tan^(-1)((x)/(a))-tan^(-1)((x-a)/(x+a))}]=