Home
Class 12
MATHS
If : f(x)=(1)/(sqrt(x^(2)+a^(2))+sqrt(x^...

If : `f(x)=(1)/(sqrt(x^(2)+a^(2))+sqrt(x^(2)+b^(2)))" then: "f'(x)=`

A

`(x)/(a^(2)-b^(2))[(1)/(sqrt(x^(2)+a^(2)))-(1)/(sqrt(x^(2)+b^(2)))]`

B

`(x)/(a^(2)+b^(2))[(1)/(sqrt(x^(2)+a^(2)))-(2)/(sqrt(x^(2)+b^(2)))]`

C

`(x)/(a^(2)-b^(2))[(1)/(sqrt(x^(2)+a^(2)))+(1)/(sqrt(x^(2)+b^(2)))]`

D

`(a^(2)+b^(2))[(1)/(sqrt(x^(2)+a^(2)))-(1)/(sqrt(x^(2)+b^(2)))]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( f'(x) \) of the function \[ f(x) = \frac{1}{\sqrt{x^2 + a^2} + \sqrt{x^2 + b^2}}, \] we will follow these steps: ### Step 1: Simplify the function We will rationalize the denominator. To do this, we multiply the numerator and denominator by the conjugate of the denominator: \[ f(x) = \frac{1}{\sqrt{x^2 + a^2} + \sqrt{x^2 + b^2}} \cdot \frac{\sqrt{x^2 + a^2} - \sqrt{x^2 + b^2}}{\sqrt{x^2 + a^2} - \sqrt{x^2 + b^2}}. \] ### Step 2: Multiply out the numerator and denominator The numerator becomes: \[ \sqrt{x^2 + a^2} - \sqrt{x^2 + b^2}. \] The denominator simplifies as follows: \[ (\sqrt{x^2 + a^2})^2 - (\sqrt{x^2 + b^2})^2 = (x^2 + a^2) - (x^2 + b^2) = a^2 - b^2. \] Thus, we have: \[ f(x) = \frac{\sqrt{x^2 + a^2} - \sqrt{x^2 + b^2}}{a^2 - b^2}. \] ### Step 3: Differentiate \( f(x) \) Now we differentiate \( f(x) \): \[ f'(x) = \frac{1}{a^2 - b^2} \left( \frac{d}{dx}(\sqrt{x^2 + a^2}) - \frac{d}{dx}(\sqrt{x^2 + b^2}) \right). \] Using the chain rule, we find the derivatives: \[ \frac{d}{dx}(\sqrt{x^2 + a^2}) = \frac{1}{2\sqrt{x^2 + a^2}} \cdot 2x = \frac{x}{\sqrt{x^2 + a^2}}, \] \[ \frac{d}{dx}(\sqrt{x^2 + b^2}) = \frac{1}{2\sqrt{x^2 + b^2}} \cdot 2x = \frac{x}{\sqrt{x^2 + b^2}}. \] ### Step 4: Substitute the derivatives back into \( f'(x) \) Now substituting back, we get: \[ f'(x) = \frac{1}{a^2 - b^2} \left( \frac{x}{\sqrt{x^2 + a^2}} - \frac{x}{\sqrt{x^2 + b^2}} \right). \] ### Step 5: Factor out \( x \) Factoring out \( x \) gives us: \[ f'(x) = \frac{x}{a^2 - b^2} \left( \frac{1}{\sqrt{x^2 + a^2}} - \frac{1}{\sqrt{x^2 + b^2}} \right). \] ### Final Result Thus, the derivative \( f'(x) \) is: \[ f'(x) = \frac{x}{a^2 - b^2} \left( \frac{1}{\sqrt{x^2 + a^2}} - \frac{1}{\sqrt{x^2 + b^2}} \right). \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

f(x)=(1)/(sqrt(x^(2)-1))

f(x)=sqrt(x^(2)-x+1)

If f(x)=(x)/(sqrt(1-x^(2))),g(x)=(x)/(sqrt(1+x^(2))) then ( fog )(x)=

If f'(x)=(1)/(-x+sqrt(x^(2)+1)) and f(0)=(1+sqrt(2))/(2) then f(1) is equal to -log(sqrt(2)+1)( b )11+sqrt(2)(d) none of these

If f(x)=(x)/(sqrt(a^(2)+x^(2)))+((d-x))/(sqrt(b^(2)+(d-x)^(2))) ten (A) f(x) is strictly increasing (B) f(x)^(2) strictly deceasing (C) f backslash(x) is constant (D)f(x) is neither increasing nor decreasing

If f(x)=(sqrt(x)+(1)/(sqrt(x)))^(2)," then: "f'(2)=

Find the domain of each of the following real valued functions of real variable: f(x)=sqrt(x-2) (ii) f(x)=(1)/(sqrt(x^(2)-1)) (iii) f(x)=sqrt(9-x^(2))( iv )f(x)=sqrt((x-2)/(3-x))

If f(x)=sqrt(x^(2)-2x+1), then f' (x) ?

If f(x)=sqrt(x+2sqrt(x))," then "f'(1)=

If int(2x-sqrt(sin^(-1)x))/(sqrt(1-x^(2)))dx=C-2sqrt(1-x^(2))-(2)/(3)sqrt(f(x)) then f(x) is equal to

MARVEL PUBLICATION-DIFFERENTIATION-MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)
  1. If : f(x)=(1)/(sqrt(x^(2)+a^(2))+sqrt(x^(2)+b^(2)))" then: "f'(x)=

    Text Solution

    |

  2. If x=t*logt" and "y=t^(t)," then: "(dy)/(dx)=

    Text Solution

    |

  3. If 2x=y^(1//n)," then: "x^(2)(y(1))^(2)=

    Text Solution

    |

  4. If y=x^(2)+1" and "u=sqrt(1+x^(2))," then: "(dy)/(dx)=

    Text Solution

    |

  5. If y=sqrt(cos2x)," then: "yy(2)+2y^(2)=

    Text Solution

    |

  6. If x=(t+1)/(t),y=(t-1)/(t)," then: "(dy)/(dx)=

    Text Solution

    |

  7. If d/dx\ ((1+x^2+x^4)/(1+x+x^2)) = ax+b, then (a, b) =

    Text Solution

    |

  8. If cos x =1/sqrt(1+t^(2)), and sin y = t/sqrt(1+t^(2)), then (dy)/(dx)...

    Text Solution

    |

  9. If y=(x^(1/3)-x^(-1/3))then (dy)/(dx) is

    Text Solution

    |

  10. If y=(e^(4logx)-e^(3logx))/(e^(2logx)-e^(logx))," then: "(dy)/(dx)=

    Text Solution

    |

  11. If y=cos^(2)[tan^(-1)sqrt((1-x)/(1+x)))] then dy/dx=

    Text Solution

    |

  12. d/(dx)[sin^(- 1)(x-(4x^3)/27)]= 4x327dx

    Text Solution

    |

  13. (d)/(dx)(sec^(2)x*csc^(2)x)=

    Text Solution

    |

  14. If y=log((1)/(1-x))," then: "(dy)/(dx)-1=

    Text Solution

    |

  15. If y=4^(log2(sinx))+9^(log3(cosx)," then "(log2(log3)y(1)=

    Text Solution

    |

  16. If y=cos((1)/(2)cos^(-1)x)," then "(dx)/(dy)=

    Text Solution

    |

  17. If y=(1+x^(1/4))(1+x^(1/2))(1-x^(1/4)) , then find (dy)/(dx)dot

    Text Solution

    |

  18. If x^(2)=1+cosy," then: "(dy)/(dx)=

    Text Solution

    |

  19. Defferential coefficient of x^(x)w.r.t.x*logx is

    Text Solution

    |

  20. If x=sqrt(y+sqrt(y+sqrt(y+..."to"oo)))," then: "(dy)/(dx)=

    Text Solution

    |

  21. If 3x^(2)+4xy-5y^(2)=0," then: "(dy)/(dx)=

    Text Solution

    |