Home
Class 12
MATHS
If : f(x)=(sin^(2)x)/(1+cotx)+(cos^(2)x)...

If : `f(x)=(sin^(2)x)/(1+cotx)+(cos^(2)x)/(1+tanx)," then: "f'((pi)/(4))=`

A

`sqrt(2)`

B

`1//sqrt(3)`

C

0

D

`-sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'\left(\frac{\pi}{4}\right) \) for the function \[ f(x) = \frac{\sin^2 x}{1 + \cot x} + \frac{\cos^2 x}{1 + \tan x}, \] we will follow these steps: ### Step 1: Rewrite the function We start by rewriting the cotangent and tangent functions in terms of sine and cosine: \[ \cot x = \frac{\cos x}{\sin x} \quad \text{and} \quad \tan x = \frac{\sin x}{\cos x}. \] Thus, we can rewrite \( f(x) \): \[ f(x) = \frac{\sin^2 x}{1 + \frac{\cos x}{\sin x}} + \frac{\cos^2 x}{1 + \frac{\sin x}{\cos x}}. \] ### Step 2: Simplify the fractions Now, we simplify each term: 1. For the first term: \[ \frac{\sin^2 x}{1 + \frac{\cos x}{\sin x}} = \frac{\sin^2 x}{\frac{\sin x + \cos x}{\sin x}} = \frac{\sin^3 x}{\sin x + \cos x}. \] 2. For the second term: \[ \frac{\cos^2 x}{1 + \frac{\sin x}{\cos x}} = \frac{\cos^2 x}{\frac{\cos x + \sin x}{\cos x}} = \frac{\cos^3 x}{\sin x + \cos x}. \] Combining both terms, we have: \[ f(x) = \frac{\sin^3 x + \cos^3 x}{\sin x + \cos x}. \] ### Step 3: Use the identity for sum of cubes Recall the identity for the sum of cubes: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2). \] Applying this to our function: \[ \sin^3 x + \cos^3 x = (\sin x + \cos x)(\sin^2 x - \sin x \cos x + \cos^2 x). \] Thus, we can simplify \( f(x) \): \[ f(x) = \sin^2 x - \sin x \cos x + \cos^2 x. \] Since \( \sin^2 x + \cos^2 x = 1 \): \[ f(x) = 1 - \sin x \cos x. \] ### Step 4: Differentiate \( f(x) \) Now we differentiate \( f(x) \): \[ f'(x) = 0 - \frac{d}{dx}(\sin x \cos x). \] Using the product rule: \[ \frac{d}{dx}(\sin x \cos x) = \sin x \frac{d}{dx}(\cos x) + \cos x \frac{d}{dx}(\sin x) = \sin x (-\sin x) + \cos x (\cos x) = \cos^2 x - \sin^2 x. \] Thus, \[ f'(x) = -(\cos^2 x - \sin^2 x) = \sin^2 x - \cos^2 x. \] ### Step 5: Evaluate \( f'\left(\frac{\pi}{4}\right) \) Now we evaluate \( f'\left(\frac{\pi}{4}\right) \): At \( x = \frac{\pi}{4} \): \[ \sin\left(\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}. \] Thus, \[ f'\left(\frac{\pi}{4}\right) = \left(\frac{1}{\sqrt{2}}\right)^2 - \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2} - \frac{1}{2} = 0. \] ### Final Answer \[ f'\left(\frac{\pi}{4}\right) = 0. \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(1-sin^(2)x)/(1+sin^(2)x)," then "3f'((pi)/(4))-f((pi)/(4))=

(1+cos4x)/(cotx-tanx)

f(x)=((1-cos x)/(1-sin x)), then f'((pi)/(2)) is equal to

If f(x)=det[[sin^(2)x,cos^(2)x,1cos^(2)x,sin^(2)x,1x-12,12,2]] then f'((pi)/(2))=

If f(x) is continuous at x=pi/2 , where f(x)=(sqrt(2)-sqrt(1+sin x))/(cos^(2)x) , for x!= pi/2 , then f(pi/2)=

If int(sin2x)/(sin^(4)x+cos^(4)x)dx=tan^(-1)[f(x)]+c , then f(pi/3)=

Let (d)/(dx)(f(x))=((sin^(12)x-cos^(12)x)/((sin^(2)x-cos^(2)x)(1-3sin^(2)x cos^(2)x))) be such that f(0)=0 then f((pi)/(2)) equals (k pi)/(16). Find the value of k(k in N)

if f(x)=(sqrt(2)cos x-1)/(cot x-1),x!=(pi)/(4) Find the value of f((pi)/(4)) so that f(x) becomes continuous at x=(pi)/(4)

If f(x) is continuous at x=(pi)/(4) where f(x)=(2sqrt(2)-(cos x+sin x)^(3))/(1-sin2x) ,for x!=(pi)/(4) then f((pi)/(4))=

if int e^(sin x)(x cos^(3)x-sin x)/(cos^(2)x)dx and f(0)=1 then f(pi)= is

MARVEL PUBLICATION-DIFFERENTIATION-MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)
  1. If : f(x)=(sin^(2)x)/(1+cotx)+(cos^(2)x)/(1+tanx)," then: "f'((pi)/(4)...

    Text Solution

    |

  2. If x=t*logt" and "y=t^(t)," then: "(dy)/(dx)=

    Text Solution

    |

  3. If 2x=y^(1//n)," then: "x^(2)(y(1))^(2)=

    Text Solution

    |

  4. If y=x^(2)+1" and "u=sqrt(1+x^(2))," then: "(dy)/(dx)=

    Text Solution

    |

  5. If y=sqrt(cos2x)," then: "yy(2)+2y^(2)=

    Text Solution

    |

  6. If x=(t+1)/(t),y=(t-1)/(t)," then: "(dy)/(dx)=

    Text Solution

    |

  7. If d/dx\ ((1+x^2+x^4)/(1+x+x^2)) = ax+b, then (a, b) =

    Text Solution

    |

  8. If cos x =1/sqrt(1+t^(2)), and sin y = t/sqrt(1+t^(2)), then (dy)/(dx)...

    Text Solution

    |

  9. If y=(x^(1/3)-x^(-1/3))then (dy)/(dx) is

    Text Solution

    |

  10. If y=(e^(4logx)-e^(3logx))/(e^(2logx)-e^(logx))," then: "(dy)/(dx)=

    Text Solution

    |

  11. If y=cos^(2)[tan^(-1)sqrt((1-x)/(1+x)))] then dy/dx=

    Text Solution

    |

  12. d/(dx)[sin^(- 1)(x-(4x^3)/27)]= 4x327dx

    Text Solution

    |

  13. (d)/(dx)(sec^(2)x*csc^(2)x)=

    Text Solution

    |

  14. If y=log((1)/(1-x))," then: "(dy)/(dx)-1=

    Text Solution

    |

  15. If y=4^(log2(sinx))+9^(log3(cosx)," then "(log2(log3)y(1)=

    Text Solution

    |

  16. If y=cos((1)/(2)cos^(-1)x)," then "(dx)/(dy)=

    Text Solution

    |

  17. If y=(1+x^(1/4))(1+x^(1/2))(1-x^(1/4)) , then find (dy)/(dx)dot

    Text Solution

    |

  18. If x^(2)=1+cosy," then: "(dy)/(dx)=

    Text Solution

    |

  19. Defferential coefficient of x^(x)w.r.t.x*logx is

    Text Solution

    |

  20. If x=sqrt(y+sqrt(y+sqrt(y+..."to"oo)))," then: "(dy)/(dx)=

    Text Solution

    |

  21. If 3x^(2)+4xy-5y^(2)=0," then: "(dy)/(dx)=

    Text Solution

    |