Home
Class 12
MATHS
If : 3f(x)-2f((1)/(x))=x," then: "f'(2)=...

If : `3f(x)-2f((1)/(x))=x," then: "f'(2)=`

A

`2//7`

B

`1//2`

C

2

D

`7//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ 3f(x) - 2f\left(\frac{1}{x}\right) = x \] ### Step 1: Differentiate both sides with respect to \( x \) Using the differentiation rules, we differentiate the left-hand side: \[ \frac{d}{dx}[3f(x)] - \frac{d}{dx}[2f\left(\frac{1}{x}\right)] = \frac{d}{dx}[x] \] This gives us: \[ 3f'(x) - 2 \cdot f'\left(\frac{1}{x}\right) \cdot \left(-\frac{1}{x^2}\right) = 1 \] ### Step 2: Simplify the differentiated equation Rearranging the equation, we have: \[ 3f'(x) + \frac{2}{x^2} f'\left(\frac{1}{x}\right) = 1 \] ### Step 3: Substitute \( x = 2 \) We want to find \( f'(2) \), so we substitute \( x = 2 \): \[ 3f'(2) + \frac{2}{2^2} f'\left(\frac{1}{2}\right) = 1 \] This simplifies to: \[ 3f'(2) + \frac{2}{4} f'\left(\frac{1}{2}\right) = 1 \] or \[ 3f'(2) + \frac{1}{2} f'\left(\frac{1}{2}\right) = 1 \] (Equation 1) ### Step 4: Substitute \( x = \frac{1}{2} \) Next, we substitute \( x = \frac{1}{2} \) into the differentiated equation: \[ 3f'\left(\frac{1}{2}\right) + \frac{2}{\left(\frac{1}{2}\right)^2} f'(2) = 1 \] This simplifies to: \[ 3f'\left(\frac{1}{2}\right) + 8f'(2) = 1 \] (Equation 2) ### Step 5: Solve the system of equations Now we have two equations: 1. \( 3f'(2) + \frac{1}{2} f'\left(\frac{1}{2}\right) = 1 \) 2. \( 3f'\left(\frac{1}{2}\right) + 8f'(2) = 1 \) From Equation 1, we can express \( f'\left(\frac{1}{2}\right) \): \[ \frac{1}{2} f'\left(\frac{1}{2}\right) = 1 - 3f'(2) \] Multiplying through by 2: \[ f'\left(\frac{1}{2}\right) = 2 - 6f'(2) \] ### Step 6: Substitute back into Equation 2 Substituting this expression into Equation 2: \[ 3(2 - 6f'(2)) + 8f'(2) = 1 \] Expanding gives: \[ 6 - 18f'(2) + 8f'(2) = 1 \] Combining like terms: \[ 6 - 10f'(2) = 1 \] ### Step 7: Solve for \( f'(2) \) Rearranging gives: \[ -10f'(2) = 1 - 6 \] \[ -10f'(2) = -5 \] Dividing by -10: \[ f'(2) = \frac{1}{2} \] ### Final Answer Thus, the value of \( f'(2) \) is: \[ \boxed{\frac{1}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If2f(x)+3f((1)/(x))=x^(2)-1 then f(x) is

If 2f(x)-3f((1)/(x))=x^(2),x!=0, then find f(2)

If 2f(x)-3f((1)/(x))=6x+(1)/(x) then find f(x) and f(2)

If 2f(x) - 3 f(1//x) = x," then " int_(1)^(2) f(x) dx is equal to

If : f(x)=e^(x^2)," then: "f'(x)-2x*f(x)+(1)/(3)*f(0)-f'(0)=

If f(x)=log((1+x)/(1-x)), then (a) f(x_(1))f(x)=f(x_(1)+x_(2))(b)f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^(2)+x)(d)f(x_(1))+f(x_(2))=f((x_(1)+x_(2))/(1+x_(1)x_(2)))

If f(x)=log((1+x)/(1-x)) and then f((2x)/(1+x^(2))) is equal to {f(x)}^(2) (b) {f(x)}^(3)(c)2f(x)(d)3f(x)

If f(x)=log((1+x)/(1-x)), then f(x) is (i) Even Function (ii) f(x_(1))-f(x_(2))=f(x_(1)+x_(2)) (iii) ((f(x_(1)))/(f(x_(2))))=f(x_(1)-x_(2)) (iv) Odd function

If f(x)=(x-1)/(2x^(2)-7x+5) for x!=1 and f(x)=-(1)/(3) for x=1 then f'(1)=

If f(x)=(2x+3)/(x-2) , then: (f@f)(x)=