Home
Class 12
MATHS
If : f'(1)=2" and "g'(sqrt(2))=4," then:...

If : `f'(1)=2" and "g'(sqrt(2))=4," then: derivative of "f(tanx)w.r.t.g(secx)" at "x=pi//4,` is

A

`(1)/(sqrt(2))`

B

`sqrt(2)`

C

1

D

`(3)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of \( f(\tan x) \) with respect to \( g(\sec x) \) at \( x = \frac{\pi}{4} \), we will use the chain rule and the given information about the derivatives of \( f \) and \( g \). ### Step-by-Step Solution: 1. **Define the Functions:** Let \( u = f(\tan x) \) and \( v = g(\sec x) \). 2. **Find \( \frac{du}{dx} \):** Using the chain rule: \[ \frac{du}{dx} = f'(\tan x) \cdot \frac{d}{dx}(\tan x) \] The derivative of \( \tan x \) is \( \sec^2 x \). Thus, \[ \frac{du}{dx} = f'(\tan x) \cdot \sec^2 x \] 3. **Find \( \frac{dv}{dx} \):** Similarly, for \( v \): \[ \frac{dv}{dx} = g'(\sec x) \cdot \frac{d}{dx}(\sec x) \] The derivative of \( \sec x \) is \( \sec x \tan x \). Therefore, \[ \frac{dv}{dx} = g'(\sec x) \cdot \sec x \tan x \] 4. **Find \( \frac{du}{dv} \):** We want to find \( \frac{du}{dv} \): \[ \frac{du}{dv} = \frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{f'(\tan x) \cdot \sec^2 x}{g'(\sec x) \cdot \sec x \tan x} \] 5. **Evaluate at \( x = \frac{\pi}{4} \):** At \( x = \frac{\pi}{4} \): - \( \tan\left(\frac{\pi}{4}\right) = 1 \) - \( \sec\left(\frac{\pi}{4}\right) = \sqrt{2} \) Substitute these values: \[ \frac{du}{dv} = \frac{f'(1) \cdot \sec^2\left(\frac{\pi}{4}\right)}{g'(\sqrt{2}) \cdot \sec\left(\frac{\pi}{4}\right) \tan\left(\frac{\pi}{4}\right)} \] We know: - \( \sec^2\left(\frac{\pi}{4}\right) = 2 \) - \( f'(1) = 2 \) - \( g'(\sqrt{2}) = 4 \) Thus, \[ \frac{du}{dv} = \frac{2 \cdot 2}{4 \cdot \sqrt{2} \cdot 1} = \frac{4}{4\sqrt{2}} = \frac{1}{\sqrt{2}} \] ### Final Answer: The derivative of \( f(\tan x) \) with respect to \( g(\sec x) \) at \( x = \frac{\pi}{4} \) is: \[ \frac{1}{\sqrt{2}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

Derivative of (f@g)(x)w.r.t.g(x) is

If f'(1)=-2sqrt(2) and g'(sqrt(2))=4, then the derivative of f(tan x) with respect to g(sec x) at x=(pi)/(4), is 1(b)-1(c)2(d)4

If f(x)=tan^(-1)x," then the derivative of "f(tanx)w.r.t.f(cotx) is

The derivative of f(tan x)w*r.t.g(sec x) at x=(pi)/(4), where f'(1)=2 and g'(sqrt(2))=4

If f'((1)/(2)) =2,g'((sqrt3)/( 2))=2 then derivates of f (cos x), w.r.t. g(sin x ) at x= (pi)/(3) is

Find the derivative of f(tan x)w*r.tg(sec x) at x=(pi)/(4), where f'(1)=2 and g'(sqrt(2))=4

The derivative of a^(secx) w.r.t. a^(tanx)(agt0) is

The derivative of f(x)= 3x^2 +2x + 4 w.r.t. x is

Find the derivative of f(tanx) w.r.t. g(secx) at x=pi/4 , where f^(prime)(1)=2 and g^(prime)(sqrt(2))=4 .

MARVEL PUBLICATION-DIFFERENTIATION-MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)
  1. If : f'(1)=2" and "g'(sqrt(2))=4," then: derivative of "f(tanx)w.r.t.g...

    Text Solution

    |

  2. If x=t*logt" and "y=t^(t)," then: "(dy)/(dx)=

    Text Solution

    |

  3. If 2x=y^(1//n)," then: "x^(2)(y(1))^(2)=

    Text Solution

    |

  4. If y=x^(2)+1" and "u=sqrt(1+x^(2))," then: "(dy)/(dx)=

    Text Solution

    |

  5. If y=sqrt(cos2x)," then: "yy(2)+2y^(2)=

    Text Solution

    |

  6. If x=(t+1)/(t),y=(t-1)/(t)," then: "(dy)/(dx)=

    Text Solution

    |

  7. If d/dx\ ((1+x^2+x^4)/(1+x+x^2)) = ax+b, then (a, b) =

    Text Solution

    |

  8. If cos x =1/sqrt(1+t^(2)), and sin y = t/sqrt(1+t^(2)), then (dy)/(dx)...

    Text Solution

    |

  9. If y=(x^(1/3)-x^(-1/3))then (dy)/(dx) is

    Text Solution

    |

  10. If y=(e^(4logx)-e^(3logx))/(e^(2logx)-e^(logx))," then: "(dy)/(dx)=

    Text Solution

    |

  11. If y=cos^(2)[tan^(-1)sqrt((1-x)/(1+x)))] then dy/dx=

    Text Solution

    |

  12. d/(dx)[sin^(- 1)(x-(4x^3)/27)]= 4x327dx

    Text Solution

    |

  13. (d)/(dx)(sec^(2)x*csc^(2)x)=

    Text Solution

    |

  14. If y=log((1)/(1-x))," then: "(dy)/(dx)-1=

    Text Solution

    |

  15. If y=4^(log2(sinx))+9^(log3(cosx)," then "(log2(log3)y(1)=

    Text Solution

    |

  16. If y=cos((1)/(2)cos^(-1)x)," then "(dx)/(dy)=

    Text Solution

    |

  17. If y=(1+x^(1/4))(1+x^(1/2))(1-x^(1/4)) , then find (dy)/(dx)dot

    Text Solution

    |

  18. If x^(2)=1+cosy," then: "(dy)/(dx)=

    Text Solution

    |

  19. Defferential coefficient of x^(x)w.r.t.x*logx is

    Text Solution

    |

  20. If x=sqrt(y+sqrt(y+sqrt(y+..."to"oo)))," then: "(dy)/(dx)=

    Text Solution

    |

  21. If 3x^(2)+4xy-5y^(2)=0," then: "(dy)/(dx)=

    Text Solution

    |