Home
Class 12
MATHS
If y=1+x+x^2/(2!)+x^3/(3!)....x^n/(n!)...

If `y=1+x+x^2/(2!)+x^3/(3!)....x^n/(n!)`

A

y

B

`y^(2)`

C

`e^(y)`

D

`(y^(n))/(n!)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

Statement 1: The coefficient of x^(n) is (1+x+(x^(2))/(2!)+(x^(3))/(3!)+...+(x^(n))/(n!))^(3) is (3^(n))/(n!) Statement 2: The coefficient of x^(n)ine^(3x)is(3^(n))/(n!)

If y=1+(x)/(1!)+(x^(2))/(2!)+(x^(3))/(3!)++(x^(n))/(n!), show that (dy)/(dx)-y+(x^(n))/(n!)=0

The coefficient of x^(n) in (1-(x)/(1!)+(x^(2))/(2!)-(x^(3))/(3!)+...+((-1)^(n)x^(n))/(n!))^(2) is equal to

If (1 + x + x^(2) + x^(3))^(n) = a_(0) + a_(1)x + a_(2)x^(2)+"……….."a_(3n)x^(3n) then which of following are correct

Statement-1: The middle term of (x+(1)/(x))^(2n) can exceed ((2n)^(n))/(n!) for some value of x. Statement-2: The coefficient of x^(n) in the expansion of (1-2x+3x^(2)-4x^(3)+ . . .)^(-n) is (1*3*5 . . .(2n-1))/(n!)*2^(n) . Statement-3: The coefficient of x^(5) in (1+2x+3x^(2)+ . . .)^(-3//2) is 2.1.

Examine the continuity of the given function at given points f(x)=(x+3x^(2)+5x^(3)+....+(2n-1)x^(n)-n^(2))/(x-1) for x!=1 at x=1 and =(n(n^(2)-1))/(3), for x=1

The co-efficient of x^(n) in (1+x+2x^(2)+3x^(3)+...+nx^(n))^(2) is

If |x^n x^(n+2)x^(n+3)y^n y^(n+2)y^(n+3)z^n z^(n+2)z^(n+3)|=(x-y)(y-z)(z-x)(1/x+1/y+1/z), then n equals 1 b. -1 c. 2 d. -2

(1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + ...+ C_(n) x^(n) , show that sum_(r=0)^(n) C_(r)^(3) is equal to the coefficient of x^(n) y^(n) in the expansion of {(1+ x)(1 + y) (x + y)}^(n) .