Home
Class 12
MATHS
If : y=cos^(-1)(8x^(4)-8x^(2)+1)," then:...

If : `y=cos^(-1)(8x^(4)-8x^(2)+1)," then: "(dy)/(dx)=`

A

`(4)/(sqrt(1-x^(2)))`

B

`(-4)/(sqrt(1-x^(2)))`

C

`(4)/(1+x^(2))`

D

`(-4)/(1+x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \cos^{-1}(8x^4 - 8x^2 + 1) \), we will follow these steps: ### Step 1: Identify the function and apply the chain rule The function is \( y = \cos^{-1}(u) \) where \( u = 8x^4 - 8x^2 + 1 \). Using the chain rule, we have: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \] ### Step 2: Differentiate \( y \) with respect to \( u \) The derivative of \( y = \cos^{-1}(u) \) is: \[ \frac{dy}{du} = -\frac{1}{\sqrt{1 - u^2}} \] ### Step 3: Differentiate \( u \) with respect to \( x \) Now we need to differentiate \( u = 8x^4 - 8x^2 + 1 \): \[ \frac{du}{dx} = \frac{d}{dx}(8x^4) - \frac{d}{dx}(8x^2) + \frac{d}{dx}(1) \] Calculating each term: \[ \frac{d}{dx}(8x^4) = 32x^3, \quad \frac{d}{dx}(8x^2) = 16x, \quad \frac{d}{dx}(1) = 0 \] Thus, \[ \frac{du}{dx} = 32x^3 - 16x \] ### Step 4: Substitute \( u \) back into the derivative Now we can substitute \( u \) back into the derivative: \[ \frac{dy}{dx} = -\frac{1}{\sqrt{1 - (8x^4 - 8x^2 + 1)^2}} \cdot (32x^3 - 16x) \] ### Step 5: Simplify the expression We can simplify the expression: \[ \frac{dy}{dx} = -\frac{32x^3 - 16x}{\sqrt{1 - (8x^4 - 8x^2 + 1)^2}} \] ### Final Result Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = -\frac{16(2x^3 - x)}{\sqrt{1 - (8x^4 - 8x^2 + 1)^2}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If =sin^(-1)(3t-4t^(3)),y=cos^(-1)(8t^(4)-8t^(2)+1) then (dy)/(dx)=

If y = cos^(-1) (4x^(3) -3x) " then " (dy)/(dx)= ?

If y=tan ^(-1) ((6x )/( 1-8x^(2))),then (dy)/(dx)=

if y=cos^(-1)((1-x)/(1+x)) then find (dy)/(dx)

If y=cos((1)/(2)cos^(-1)x)," then "(dy)/(dx)=

If y=cos ^(-1) sqrt((1+x) /( 2) )then (dy)/(dx)=

If y=cos ^(-1) sqrt(1+x^(2)),then (dy)/(dx) =

If y=(cos^(-1)x)/(1+x^(2)),"then " dy/dx=

If y=cos^(-1) (1-2 sin^(2) x),"then " dy/dx=

If y=(sin^(-1)x-cos^(-1)x)/(sin^(-1)x+cos^(-1)x)," then "(dy)/(dx)=