Home
Class 12
MATHS
If : (dx)/(dy)=u" and "(d^(2)x)/(dy^(2))...

If : `(dx)/(dy)=u" and "(d^(2)x)/(dy^(2))=v," then: "(d^(2)y)/(dx^(2))=`

A

`-(v)/(u^(2))`

B

`(v)/(u^(2))`

C

`-(v)/(u^(3))`

D

`(v)/(u^(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the second derivative of \( y \) with respect to \( x \), denoted as \( \frac{d^2y}{dx^2} \), given that \( \frac{dx}{dy} = u \) and \( \frac{d^2x}{dy^2} = v \). ### Step-by-Step Solution: 1. **Start with the given derivatives**: \[ \frac{dx}{dy} = u \] \[ \frac{d^2x}{dy^2} = v \] 2. **Find the first derivative of \( y \) with respect to \( x \)**: Since \( \frac{dx}{dy} = u \), we can express \( \frac{dy}{dx} \) as the reciprocal: \[ \frac{dy}{dx} = \frac{1}{u} \] 3. **Differentiate \( \frac{dy}{dx} \) with respect to \( x \)**: We need to find \( \frac{d^2y}{dx^2} \), which is the derivative of \( \frac{dy}{dx} \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}\left(\frac{1}{u}\right) \] 4. **Use the chain rule to differentiate \( \frac{1}{u} \)**: Applying the chain rule: \[ \frac{d}{dx}\left(\frac{1}{u}\right) = -\frac{1}{u^2} \cdot \frac{du}{dx} \] 5. **Express \( \frac{du}{dx} \) in terms of \( u \) and \( v \)**: To find \( \frac{du}{dx} \), we can use the relationship between \( u \) and \( v \): \[ \frac{du}{dx} = \frac{du}{dy} \cdot \frac{dy}{dx} \] From \( \frac{dx}{dy} = u \), we have: \[ \frac{du}{dy} = \frac{d}{dy}\left(\frac{1}{u}\right) = -\frac{1}{u^2} \cdot \frac{du}{dy} \] Thus: \[ \frac{du}{dx} = \frac{du}{dy} \cdot \frac{1}{u} \] 6. **Substituting back into the expression for \( \frac{d^2y}{dx^2} \)**: Now substituting \( \frac{du}{dx} \) into the expression: \[ \frac{d^2y}{dx^2} = -\frac{1}{u^2} \cdot \left(\frac{du}{dy} \cdot \frac{1}{u}\right) = -\frac{1}{u^3} \cdot \frac{du}{dy} \] 7. **Relate \( \frac{du}{dy} \) to \( v \)**: Since \( \frac{d^2x}{dy^2} = v \), we have: \[ \frac{du}{dy} = v \] 8. **Final expression for \( \frac{d^2y}{dx^2} \)**: Substitute \( v \) back into the expression: \[ \frac{d^2y}{dx^2} = -\frac{v}{u^3} \] ### Final Result: \[ \frac{d^2y}{dx^2} = -\frac{v}{u^3} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If p=(dy)/(dx) then (d^(2)y)/(dx^(2))=

If y=f(x),p=(dy)/(dx) and q=(d^(2)y)/(dx^(2)), then what is (d^(2)x)/(dy^(2)) equal to ?

If y=f(x)p=(dy)/(dx)" and q"=(d^(2)y)/(dx^(2)) . then what is (d^(2)x)/(dy^(2)) equal to ?

If ((dy)/(dx))^(2)+y^(2)=1(2a)/(y)," then "(d^(2)y)/(dx^(2))+y=

y=x^(3)-4x^(2)+5 . Find (dy)/(dx) , (d^(2) y)/(dx^(2)) and (d^(3)y)/(dx^(3)) .

If x=log pandy=(1)/(p), then (a) (d^(2)y)/(dx^(2))-2p=0 (b) (d^(2)y)/(dx^(2))+y=0 (c) (d^(2)y)/(dx^(2))+(dy)/(dx)=0( d) (d^(2)y)/(dx^(2))-(dy)/(dx)=0

[" The differential equation of the family of curves "],[y=c_(1)x^(3)+(c_(2))/(x)" where "c_(1)" and "c_(2)" are arbitrary "],[" constants,is "],[" O "x^(2)(d^(2)y)/(dx^(2))-x(dy)/(dx)-3y=0],[" (x) "(d^(2)y)/(dx^(2))+x(dy)/(dx)+3y=0],[" (x) "(d^(2)y)/(dx^(2))+x(dy)/(dx)-3y=0],[" (x) "(d^(2)y)/(dx^(2))-x(dy)/(dx)+3y=0]

In (dy)/(dx),x is a independent variable and y is the dependent variable.If independent and dependent variables are interchanged (dy)/(dx) becomes (dx)/(dy) and these two are connected by the relation (dy)/(dx)(dx)/(dy)=1. Find a relation between (d^(2)y)/(dx^(2)) and (d^(2)x)/(dy^(2))

MARVEL PUBLICATION-DIFFERENTIATION-MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)
  1. If : (dx)/(dy)=u" and "(d^(2)x)/(dy^(2))=v," then: "(d^(2)y)/(dx^(2))=

    Text Solution

    |

  2. If x=t*logt" and "y=t^(t)," then: "(dy)/(dx)=

    Text Solution

    |

  3. If 2x=y^(1//n)," then: "x^(2)(y(1))^(2)=

    Text Solution

    |

  4. If y=x^(2)+1" and "u=sqrt(1+x^(2))," then: "(dy)/(dx)=

    Text Solution

    |

  5. If y=sqrt(cos2x)," then: "yy(2)+2y^(2)=

    Text Solution

    |

  6. If x=(t+1)/(t),y=(t-1)/(t)," then: "(dy)/(dx)=

    Text Solution

    |

  7. If d/dx\ ((1+x^2+x^4)/(1+x+x^2)) = ax+b, then (a, b) =

    Text Solution

    |

  8. If cos x =1/sqrt(1+t^(2)), and sin y = t/sqrt(1+t^(2)), then (dy)/(dx)...

    Text Solution

    |

  9. If y=(x^(1/3)-x^(-1/3))then (dy)/(dx) is

    Text Solution

    |

  10. If y=(e^(4logx)-e^(3logx))/(e^(2logx)-e^(logx))," then: "(dy)/(dx)=

    Text Solution

    |

  11. If y=cos^(2)[tan^(-1)sqrt((1-x)/(1+x)))] then dy/dx=

    Text Solution

    |

  12. d/(dx)[sin^(- 1)(x-(4x^3)/27)]= 4x327dx

    Text Solution

    |

  13. (d)/(dx)(sec^(2)x*csc^(2)x)=

    Text Solution

    |

  14. If y=log((1)/(1-x))," then: "(dy)/(dx)-1=

    Text Solution

    |

  15. If y=4^(log2(sinx))+9^(log3(cosx)," then "(log2(log3)y(1)=

    Text Solution

    |

  16. If y=cos((1)/(2)cos^(-1)x)," then "(dx)/(dy)=

    Text Solution

    |

  17. If y=(1+x^(1/4))(1+x^(1/2))(1-x^(1/4)) , then find (dy)/(dx)dot

    Text Solution

    |

  18. If x^(2)=1+cosy," then: "(dy)/(dx)=

    Text Solution

    |

  19. Defferential coefficient of x^(x)w.r.t.x*logx is

    Text Solution

    |

  20. If x=sqrt(y+sqrt(y+sqrt(y+..."to"oo)))," then: "(dy)/(dx)=

    Text Solution

    |

  21. If 3x^(2)+4xy-5y^(2)=0," then: "(dy)/(dx)=

    Text Solution

    |