Home
Class 12
MATHS
If e^(x)+e^(y)=e^(x+y)" then "y(1)=...

If `e^(x)+e^(y)=e^(x+y)" then "y_(1)=`

A

`e^(x-y)`

B

`-e^(x-y)`

C

`-e^(-y-x)`

D

`-e^(y-x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( e^x + e^y = e^{x+y} \) for \( \frac{dy}{dx} \) (denoted as \( y' \)), we will differentiate both sides of the equation with respect to \( x \). ### Step-by-Step Solution: 1. **Differentiate Both Sides**: We start with the equation: \[ e^x + e^y = e^{x+y} \] Now, we differentiate both sides with respect to \( x \): \[ \frac{d}{dx}(e^x) + \frac{d}{dx}(e^y) = \frac{d}{dx}(e^{x+y}) \] 2. **Apply the Chain Rule**: The derivative of \( e^x \) is \( e^x \), and for \( e^y \), we apply the chain rule: \[ e^x + e^y \frac{dy}{dx} = e^{x+y} \left( \frac{d}{dx}(x+y) \right) \] The derivative of \( x+y \) is \( 1 + \frac{dy}{dx} \): \[ e^x + e^y \frac{dy}{dx} = e^{x+y} (1 + \frac{dy}{dx}) \] 3. **Expand the Right Side**: Expanding the right side gives: \[ e^x + e^y \frac{dy}{dx} = e^{x+y} + e^{x+y} \frac{dy}{dx} \] 4. **Rearranging the Equation**: We can rearrange the equation to isolate terms involving \( \frac{dy}{dx} \): \[ e^y \frac{dy}{dx} - e^{x+y} \frac{dy}{dx} = e^{x+y} - e^x \] Factoring out \( \frac{dy}{dx} \) on the left side: \[ \left( e^y - e^{x+y} \right) \frac{dy}{dx} = e^{x+y} - e^x \] 5. **Solve for \( \frac{dy}{dx} \)**: Now we can solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{e^{x+y} - e^x}{e^y - e^{x+y}} \] 6. **Simplifying the Expression**: We can simplify the expression further: \[ \frac{dy}{dx} = \frac{e^x(e^y - 1)}{e^y - e^{x+y}} = \frac{e^x(e^y - 1)}{e^y(1 - e^x)} \] ### Final Result: Thus, the derivative \( y' \) is given by: \[ \frac{dy}{dx} = \frac{e^x(e^y - 1)}{e^y(1 - e^x)} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If e^(x) +e^(y) =e^(x+y),then (dy)/(dx)=

If e^(x)+e^(y)=x+y, then (dy)/(dx)=

If x^(y)=e^(x-y)," then "(1+logx)^(2)y_(1)=

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) or,(dy)/(dx)+e^(y-x)=0

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)+e^(y-x)=0

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)+e^(y-x)=0

If y=sin(e^(x))+cos(e^(x))," then "y_(2)-y_(1)=

If y=log(e^(-x)+xe^(-x))," then " (1+x)y_(1)=

If e^(x)+e^(y)=e^(x+y) , prove that : (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) .