Home
Class 12
MATHS
If G(x)=-sqrt(25-x^2), find the value of...

If `G(x)=-sqrt(25-x^2)`, find the value of `lim (x->1) (G(x)-G(1))/(x-1)`

A

`-(3)/(sqrt(24))`

B

`-(1)/(sqrt(24))`

C

`(1)/(sqrt(24))`

D

`-sqrt(24)`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If G(x)=-sqrt(25-x^(2)) ,find the value of lim(x rarr1)(G(x)-G(1))/(x-1)

Given that lim_(x to oo ) ((2+x^(2))/(1+x)-Ax-B)=3 If G(x)=sqrt(25-x^(2)) then what is lim_(xto1) (G(x)-G(1))/(x-1) equal to?

If G(x)=-sqrt(25-x^(2)), then lim_(x rarr1)(G(x)-G(1))/(x-1)is (a) (1)/(24) (b) (1)/(5)(c)-sqrt(24) (d) none of these

If G(x)=-sqrt(25-x) . Then lim_(xrarr1) (G(x)-G(1))/(x-1) has the value

If G(x ) = - sqrt( 25-x^2) lim_( x - > 1 ) (G(x) - G(1 ) )/( x - 1 ) = 1/sqrt(A) then find A

Suppose f and g are two functions such that f,g:R rarr Rf(x)=ln(1+sqrt(1+x^(2))) and g(x)=ln(x+sqrt(1+x^(2))) then find the value of xe^(g(x))f((1)/(x))+g'(x) at x=1

If lim_(xtoa)[f(x)+g(x)]=2 and lim_(xtoa) [f(x)-g(x)]=1, then find the value of lim_(xtoa) f(x)g(x).

If f(a)=2,g(a)=-1,f'(a)=1, g'(a)=2 then the value of lim_(x->0) (f(x).g(a)-f(a).g(x))/(x-a)= (a) 5 (b) -5 (c) -6 (d) non of these