Home
Class 12
MATHS
If y=log[(x-1)^(1//2)-(x+1)^(1//2)]," th...

If `y=log[(x-1)^(1//2)-(x+1)^(1//2)]," then: "(dy)/(dx)=`

A

`(1)/(2)(x^(2)-1)^(-1//2)`

B

`-(1)/(2)(x^(2)-1)^(-1//2)`

C

`(1)/(2)(x^(2)-1)^(1//2)`

D

`(1)/(2)(1-x^(2))^(-1//2)`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If y=log[(x-1)^(x-1)]-log[(x+1)^(x+1)]," then: "(dy)/(dx)=

If y=log((1-x^(2))/(1+x^(2)))," then "(dy)/(dx)=

If y=log((1)/(1-x))," then: "(dy)/(dx)-1=

If y=log{((1+x)/(1-x))^(1//4)}-(1)/(2)tan^(-1)x," then "(dy)/(dx)=

If log ((x+y)/(3))=(1)/(2)(logx+logy)," then "(dy)/(dx)=

If y=(x-1)log(x-1)-(x+1)log(x+1), prove that (dy)/(dx)=log((x-1)/(1+x))

If y=(x-1)log(x-1)-(x+1)log(x+1), prove that (dy)/(dx)=log((x-1)/(1+x))

If y = log ((1-x^(2))/(1+x^(2))) , then (dy)/(dx) is equal to

If x=cos^(-1)t,y=log(1-t^(2))," then "((dy)/(dx))" at "t=(1)/(2) is

If y=log(1+ theta), x= sin^(-1) theta , then (dy)/(dx) =