Home
Class 12
CHEMISTRY
Arrhenius studied the effect of temperat...

Arrhenius studied the effect of temperature on the rate of a reaction and postulated that rate constant varies with temperature exponentially as `k=Ae^(-E_(a)//RT)`. For most of the reactions, it was found that the temperature coefficient of the reaction lies between 2 to 3. The method is generally used for finding the activation energy of a reaction. Keeping temperature constant, the effect of catalyst on the activation energy has also been studied by studying how much the rate of reaction changes in the presence of catalyst. In most of the cases, it is observed that catalyst lowers the activation energy barrier and increases the rate of reaction.
Which of the following plot will be linear ?

A

ln k versus T with - ve slope

B

k versus `1//T` with - ve slope

C

ln k versus `1//T` with - ve slop

D

ln k versus `1//T` with + ve slope.

Text Solution

AI Generated Solution

The correct Answer is:
To determine which plot will be linear based on the Arrhenius equation, we can follow these steps: ### Step 1: Write down the Arrhenius equation. The Arrhenius equation is given by: \[ k = A e^{-\frac{E_a}{RT}} \] where: - \( k \) is the rate constant, - \( A \) is the pre-exponential factor, - \( E_a \) is the activation energy, - \( R \) is the universal gas constant, - \( T \) is the temperature in Kelvin. ### Step 2: Take the natural logarithm of both sides. Taking the natural logarithm of the Arrhenius equation gives: \[ \ln k = \ln A - \frac{E_a}{RT} \] ### Step 3: Rearrange the equation. Rearranging the equation, we can express it in the form of a linear equation \( y = mx + b \): \[ \ln k = -\frac{E_a}{R} \cdot \frac{1}{T} + \ln A \] Here, we identify: - \( y = \ln k \) - \( m = -\frac{E_a}{R} \) (the slope) - \( x = \frac{1}{T} \) - \( b = \ln A \) (the y-intercept) ### Step 4: Identify the linear relationship. From the rearranged equation, we see that plotting \( \ln k \) versus \( \frac{1}{T} \) will yield a straight line. The slope of this line will be negative and equal to \(-\frac{E_a}{R}\). ### Conclusion: The linear plot will be: \[ \ln k \text{ versus } \frac{1}{T} \] ### Final Answer: The plot that will be linear is \( \ln k \) versus \( \frac{1}{T} \). ---

To determine which plot will be linear based on the Arrhenius equation, we can follow these steps: ### Step 1: Write down the Arrhenius equation. The Arrhenius equation is given by: \[ k = A e^{-\frac{E_a}{RT}} \] where: - \( k \) is the rate constant, - \( A \) is the pre-exponential factor, ...
Promotional Banner

Topper's Solved these Questions

  • CHEMICAL KINETICS

    PRADEEP|Exercise COMPETITION FOCUS (IV. Matching Type Questions)|1 Videos
  • CHEMICAL KINETICS

    PRADEEP|Exercise COMPETITION FOCUS (JEE(Main and Advanced)/Medical Entrance) (IV. Matching Type Questions)|2 Videos
  • CHEMICAL KINETICS

    PRADEEP|Exercise COMPETITION FOCUS (JEE(Main and Advanced)/Medical Entrance) (I. Multiple Choice Questions) With one or more than one correct answers|7 Videos
  • BIOMOLECULES

    PRADEEP|Exercise IMPORTANT QUESTIONS (FOR BOARD EXAMINATION)|25 Videos
  • CHEMISTRY IN EVERYDAY LIFE

    PRADEEP|Exercise IMPORTANT QUESTION FOR BOARD EXAMINATION|30 Videos

Similar Questions

Explore conceptually related problems

The effect of temperature on the rate constant of a reaction is given by

Arrhenius studies the effect of temperature on the rate of a reaction and postulted that rate constant varies with temperature exponentially as k=Ae^(E_(a)//RT) . Thuis method is generally used for finding the activation energy of a reaction. Keeping temperature constant, the effect of catalyst on the activation energy has also been studied. If the rate of reaction doubles for 10^(@)C rise of temperature form 290K to 300K, the activation energy of the reaction will be approximately :

Arrhenius studies the effect of temperature on the rate of a reaction and postulted that rate constant varies with temperature exponentially as k=Ae^(E_(a)//RT) . Thuis method is generally used for finding the activation energy of a reaction. Keeping temperature constant, the effect of catalyst on the activation energy has also been studied. The pre-exponetial factor in the Arrhenius equation of a first order reaction has the unit :

Arrhenius studies the effect of temperature on the rate of a reaction and postulted that rate constant varies with temperature exponentially as k=Ae^(E_(a)//RT) . Thuis method is generally used for finding the activation energy of a reaction. Keeping temperature constant, the effect of catalyst on the activation energy has also been studied. If x is the fraction of molecules having energy greater than E_(a) it will be given by :

Arrhenius studied the effect of temperature on the rate of a reaction and postulated that rate constant varies with temperture exponentially as K=A.e^(-Ea//RT) . This method is generally used for finding the activation energy of reaction . Keeping temperature constant , effect of catalyst on activation energy has also been studied. If the rate of reaction double for rise of temperature from 500K to 1000K, the activation energy of the reaction will be approximately [ln2=0.7]