Home
Class 11
PHYSICS
A gas at 10^(@)C temperature and 1.013xx...

A gas at `10^(@)C` temperature and 1.013xx`10^(5)` Pa pressure is compressed adiabatically to half of its volume. If the ratio of specific heats of the gas is 1.4, what is its final temperature?

A

`103^(@)C`

B

`123^(@)C`

C

`93^(@)C`

D

`146^(@)C`

Text Solution

Verified by Experts

The correct Answer is:
A

`T_(1)^(gamma)P_(1)^(1-gamma)=T_(2)^(gamma)P_(2)^(1-gamma)`
Promotional Banner

Topper's Solved these Questions

  • KINETIC THEORY OF GASES

    NARAYNA|Exercise LEVEL-II(C.W)|25 Videos
  • KINETIC THEORY OF GASES

    NARAYNA|Exercise LEVEL-III(C.W)|52 Videos
  • KINETIC THEORY OF GASES

    NARAYNA|Exercise C.U.Q|153 Videos
  • GRAVITATION

    NARAYNA|Exercise EXERCISE -IV|40 Videos
  • LAW OF MOTION

    NARAYNA|Exercise EXERCISE - IV|35 Videos

Similar Questions

Explore conceptually related problems

A gas is compressed adiabatically to half its volume. By what factor does the pressure of the gas increase?

The temperature of a hypothetical gas increases to sqrt(2) times when compressed adiabatically to half the volume. Its equation can be written as

A monatomic gas is compressed adiabatically to (1)/(4)^(th) of its original volume , the final pressure of gas in terms of initial pressure P is

At 27^(@)C , a ges is compressed to half of its volume . To what temperature it must now be heated so that gas occupies just its original volume ?

A monoatomic gas is compressed adiabatically to (8)/(27) of its initial volume if initial temperature is 27^@C , find increase in temperature

An ideal gas at 27^(@)C is compressed adiabatically to 8//27 of its original volume. If gamma = 5//3 , then the rise in temperature is

One mole of an ideal gas at an initial temperature true of TK does 6R joule of work adiabatically. If the ratio of specific heats of this gas at constant pressure and at constant volume is 5//3 , the final temperature of the gas will be

NARAYNA-KINETIC THEORY OF GASES-LEVEL-I(C.W)
  1. The temperature of 5 mol of gas which was held at constant volume was ...

    Text Solution

    |

  2. When an ideal diatomic gas is heated at constant pressure, the fractio...

    Text Solution

    |

  3. For a gas the differce between the two specific heat is 4150 J//kg K. ...

    Text Solution

    |

  4. The specific heat of air at constant pressure is 1.05kj//kg K and the ...

    Text Solution

    |

  5. The specific heat of Argon at constant volume is 0.3122 kJ/kg/K. Find ...

    Text Solution

    |

  6. If the ratio of the specific heats of steam is 1.33 and R=8312 J/k mol...

    Text Solution

    |

  7. One mole of an ideal gas undergoes an isothermal change at temperature...

    Text Solution

    |

  8. One mole of O(2) gas having a volume equal to 22.4 litres at 0^(@)C an...

    Text Solution

    |

  9. A given quantity of a ideal gas is at pressure P and absolute tempera...

    Text Solution

    |

  10. Diatomic gas at pressure 'P' and volume 'V' is compressed adiabaticall...

    Text Solution

    |

  11. The pressure and density of a diatomic gas (gamma=7//5) change adiabat...

    Text Solution

    |

  12. An ideal gas at pressure of 1 atmosphere and temperature of 27^(@)C is...

    Text Solution

    |

  13. The volume of a gas is reduced adibatically to (1//4) of its volume at...

    Text Solution

    |

  14. At 27^@C two moles of an ideal monoatomic gas occupy a volume V. The g...

    Text Solution

    |

  15. A container of volume 1m^(3) is divided into two equal compartments, o...

    Text Solution

    |

  16. A gas at 10^(@)C temperature and 1.013xx10^(5) Pa pressure is compress...

    Text Solution

    |

  17. Find the work done by a gas when it expands isothermally at 37^(@)C to...

    Text Solution

    |

  18. A monatomic gas expands at constant pressure on heating. The percentag...

    Text Solution

    |

  19. The efficiency of a heat engine if the temperature of source 227^(@)C ...

    Text Solution

    |

  20. A Carnot engine takes 3xx10^6cal. of heat from a reservoir at 62^@C, a...

    Text Solution

    |