Home
Class 12
MATHS
if (a^(2) +2bc) ,( b^(2) +2ac) ,(c^(2) ...

if ` (a^(2) +2bc) ,( b^(2) +2ac) ,(c^(2) +2ab) ` are in AP, show that
`1 / (( b-c)) ,1/((c -a)) , 1/ ((a-b)) are in AP.

Text Solution

Verified by Experts

If `a^(2) + 2bc, b^(2) + 2ac, c^(2) + 2ab ` are in A.P.
Subtract ` ab + bc + ca `
` rArr (a^(2) + 2bc) - (ab + bc + ca ). (b^(2) + 2ac) - (ab + bc + ca), (c^(2) + 2ab) - (ab + bc + ca)` are in A.P.
`rArr a^(2) + bc - ab - ca , b^(2) + ca - ab - bc, c^(2)+ ab - bc - ca ` are in A.P.
`rArr (a - b)(a - c),(b - c)(b - a)(c - a)(c - b) ` are in A.P.
Divide by `(a - b) (b - c) (c - a)`
`rArr ((a - b) (a - c))/((a - b) (b - c)(c - a)),((b - c)(b - a))/((a - b)(b - c)(c - a)),((c - a)(c - b))/((a - b)(b -c)(c-a))` are in A.P.
`rArr (-1)/(b-c),(-1)/(c-a),(-1)/(a-b)` are in A.P. `rArr (1)/(b-c),(1)/(c-a),(1)/(a-b)` are in A.P.
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    AAKASH INSTITUTE|Exercise Try Yourself|85 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE|Exercise Assignment (SECTION - A) One option is correct|60 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE|Exercise Assignment (Section - J) Aakash Challengers Questions|8 Videos
  • SETS

    AAKASH INSTITUTE|Exercise SECTION-I(Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

if (b-c)^(2) , (c-a)^(2) ,(a-b)^(2) are in AP, prove that 1/((b-c)) ,1/(( c-a)) ,1 /((a-b)) are in AP.

If (b-c)^(2),(c-a)^(2),(a-b)^(2) are in A.P.then show that (1)/(b-c),(1)/(c-a),(1)/(a-b) are in A.P.

If a,b,c are in AP show that (i) 1/(bc) ,1/(ca),1/(ab) are in AP.

If a,b,c are in AP, show that (a(b+c))/(bc) , (b (c+a))/(ca), (c(a+b))/(ab) , are also in AP.

If (b-c)^(2),(c-a)^(2),(a-b)^(2) are in A.P.then prove that (1)/(b-c),(1)/(c-a),(1)/(a-b) are also in A.P.

If a^(2),b^(2),c^(2) are in A.P,show that: (a)/(b+c),(b)/(c+a),(c)/(a+b) are in A.P.

"If " a^(2), b^(2), c^(2)" are in A.P., prove that "(1)/(b+c),(1)/(c+a),(1)/(a+b) " are also in A.P."

If a^(2),b^(2),c^(2) are in A.P.prove that (1)/(b+c),(1)/(c+a),(1)/(a+b) are in A.P.

if a,b,c are in AP, show that [(b+c)^(2) -a^(2)],[(c+a)^(2) -b^(2)],[(a+b)^(2) =c^(2)] are in AP.