Home
Class 12
MATHS
If a + b - 1, a gt 0,b gt 0, prove that ...

If a + b - 1, a `gt` 0,b `gt` 0, prove that `(a + (1)/(a))^(2) + (b + (1)/(b))^(2) ge (25)/(2)`

Text Solution

Verified by Experts

Observe that `(x - y)^(2) ge 0 `
`rArr x^(2) + y^(2) - 2xy ge0 `
`rArr x^(2) + y^(2) ge 2xy`
`rArr (x^(2) + y^(2)) + (x^(2) + y^(2)) ge x^(2) + y^(2) + 2xy" "` [Adding `x^(2) + y^(2)` to each side ]
`rArr 2(x^(2) + y^(2)) ge (x + y)^(2)`
`rArr (x^(2) +y^(2))/(2) ge (x +y)^(2)/(4)`
`rArr(x^(2) +y^(2))/(2) ge ((x +y)/(2))^(2)`
That is , mean of squares is greater than or equal to square of mean.
Now applying this to the given sum
`((a+(1)/(a))^(2) + (b +(1)/(b))^(2))/(2) ge((a+(1)/(a) +b(1)/(b))/(2))^(2) ge ((a +b +(1)/(a) +(1)/(b))/(2))^(2)` ...(i)
a + b = 1 when plugged in
`(a + b ) ((1)/(a) +(1)/(b)) ge 4 ` given `(1)/(a) +(1)/(b) ge 4 `
From (i) ,
`((a + (1)/(a))^(2) +(b +(1)/(b))^(2) )/(2)ge ((1 +4)/(2))^(2)`
i.e., `(a+(1)/(a))^(2)+(b+(1)/(b))^(2) ge (25)/(2)`.
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    AAKASH INSTITUTE|Exercise Try Yourself|85 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE|Exercise Assignment (SECTION - A) One option is correct|60 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE|Exercise Assignment (Section - J) Aakash Challengers Questions|8 Videos
  • SETS

    AAKASH INSTITUTE|Exercise SECTION-I(Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

If a+b=1,a>0, prove that (a+(1)/(a))^(2)+(b+(1)/(b))^(2)>=(25)/(2)

If a+b=1, and a,b>0, then prove that (a+(1)/(a))^(2)+(b+(1)/(b))^(2)>=(25)/(2)

If a,b,c and d are any four consecutive coefficients in the expansion of (1 + x)^(n) , then prove that (i) (a) /(a+ b) + (c)/(b+c) = (2b)/(b+c) (ii) ((b)/(b+c))^(2) gt (ac)/((a + b)(c + d)), "if " x gt 0 .

If a+b+3c=1 and a gt 0, b gt 0, c gt 0 , then the greratest value of a^(2)b^(2)c^(2) is

If a,b,c are real numbers such that 0 lt a lt 1, 0 lt b gt 1, 0 lt c lt 1, a + b + c = 2 , then prove that (a)/(1 - a) (b)/(1 - b) (c )/(1 - c) ge 8 .

If a>0,b>0,c>0 prove that a/(b+c)+b/(c+a)+c/(a+b)ge3/2 .

If agt0, b gt0 than lim_(nrarroo) ((a-1+b^((1)/(n)))/(a))^(n)=