Home
Class 12
MATHS
It a(1) , a(2) , a(3) a(4) be in G.P. t...

It ` a_(1) , a_(2) , a_(3) a_(4)` be in G.P. then prove that `(a_(2)-a_(3))^(2) + (a_(3) - a_(1))^(2) + (a_(4) +a_(2))^(2) = (a_(1)-a_(4))^(2)`

Text Solution

Verified by Experts

While proving conditional identitonal when given numbers are in A.P., G.P. or H.P., we express.,
the terms of say , G.P. as a function of first term and common ratio
Let r be common ratio . Then ` a_(2) = a_(1) r. a_(3) = a_(1) r^(2) , a_(4) = a_(1)r^(3)`
LHS = `(a_(2) - a_(3))^(2) + (a_(2) - a_(1))^(2) + (a_(4) -a_(2))^(2)`
` = (a_(1) r - a_(1) r^(2))^(2) + (a_(1) r^(2) - a_(1))^(2) + (a_(1) r^(3) -a_(1) r)^(2)`
` a_(1)^(2) {(r-r^(2))^(2) + (r^(2) -1)^(2) + (r^(3) -r)^(2)}`
` a_(1)^(2) { r ^(2) - 2r^(3) + r^(4) + r^(4) - 2r^(2) + 1 + r^(6) - 2r^(4) + r^(2)}`
` a_(1)^(2) {r^(6) - 2r^(3) + 1} = a_(1)^(2)(r^(3) -1)^(2) = (a_(1)r^(3) -a_(1))^(2)= (a_(4) -a_(1))^(2)`
RHS
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    AAKASH INSTITUTE|Exercise Try Yourself|85 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE|Exercise Assignment (SECTION - A) One option is correct|60 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE|Exercise Assignment (Section - J) Aakash Challengers Questions|8 Videos
  • SETS

    AAKASH INSTITUTE|Exercise SECTION-I(Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

If the sequence a_(1),a_(2),a_(3),dots a_(n),.... forms an A.P.then prove that a_(1)^(2)-a_(2)^(2)+a_(3)^(2)+...+a_(4)^(2)=(n)/(2n-1)(a_(1)^(2)-a_(2n)^(2))

If a_(1),a_(2),a_(3),".....",a_(n) are in HP, than prove that a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+"....."+a_(n-1)a_(n)=(n-1)a_(1)a_(n)

Let a_(1),a_(2),a_(3),...a_(n) be an AP.Prove that: (1)/(a_(1)a_(n))+(1)/(a_(2)a_(n-1))+(1)/(a_(3)a_(n-2))+......+(1)/(a_(n)a_(1))=

If a_(1),a_(2),a_(3),,a_(n) are an A.P.of non-zero terms, prove that _(1)(1)/(a_(1)a_(2))+(1)/(a_(2)a_(3))++(1)/(a_(n-1)a_(n))=(n-1)/(a_(1)a_(n))

If a_(1),a_(2),a_(3),a_(4),a_(5) are in HP, then a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+a_(4)a_(5) is eqiual to

a_(1),a_(2),a_(3)...,a_(n) are in A.P.such that a_(1)+a_(3)+a_(5)=-12 and a_(1)a_(2)a_(3)=8 then:

Let a_(1),a_(2),a_(3), . . .,a_(n) be an A.P. Statement -1 : (1)/(a_(1)a_(n))+(1)/(a_(2)a_(n-1))+(1)/(a_(3)a_(n-1))+ . . .. +(1)/(a_(n)a_(1)) =(2)/(a_(1)+a_(n))((1)/(a_(1))+(1)/(a_(2))+ . . .. +(1)/(a_(n))) Statement -2: a_(r)+a_(n-r+1)=a_(1)+a_(n)" for "1lerlen

If a_(1),a_(2),a_(3),...,a_(100) are in A P such that a_(1)+a_(3)+a_(4)+a_(3)+a_(7)=20 then a_(4)=