Home
Class 12
MATHS
Find the value of sum (r=1)^(89) "log"(1...

Find the value of `sum _(r=1)^(89) "log"_(10) "cot" (pir)/(180)`

Text Solution

Verified by Experts

We have ,
`sum _(r=1)^(89) "log"_(10) "cot" (pir)/(180)`
` "log"_(10) "cot" (pi)/(180)+log_(10) "cot"(2pi)/(180)+ log_(10)"cot"(3pi)/(180) + ...+ (88pi)/(180) + log_(10) "cot" (89pi)/(180)`
` log_(10) cot 1^(@)+log_(10) cot 2^(@)+log_(10) cot 3^(@)+...+log_(10) cot 88^(@)+log_(10) cot 89^(@)[ because (pi^(c))/(180) = 1 ^(@)]`
`log_(10) (cot 1^(@) cot 2^(@) cot 3^(@)....... cot 88^(@) cot 89^(@))`
`log_(10) {(cot 1^(@) cot 89^(@))( cot 2^(@) cot 88^(@))(cot3^(@) cot 87^(@))...(cot44^(@) cot 45^(@)) cot45^(@)}`
`log_(10) 1 = 0 `
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    AAKASH INSTITUTE|Exercise Try Yourself|85 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE|Exercise Assignment (SECTION - A) One option is correct|60 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE|Exercise Assignment (Section - J) Aakash Challengers Questions|8 Videos
  • SETS

    AAKASH INSTITUTE|Exercise SECTION-I(Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(r=1)^(10)r.r! is

The value of sum_(r=1)^(89)log_(10)(tan((pi r)/(180))) is equal to

sum _(k =1) ^(89) log _(e) tan ((pik)/(180)) is equal to

The value of sum int_(r=1)^(r=10)rC(10,r) is

Find the value of : (log )_(10)100

The value of sum_(r=1)^(10)rP(r,r) is

sum_(r=1)^(89)log_(3)(tan r^(@)))

Find the value of sum_(r = 1)^(10) sum_(s = 1)^(10) tan^(-1) ((r)/(s))

If T_(r)=(1)/(log_(2^r)4) (where r in N ), then the value of sum_(r=1)^(4) T_(r) is :