Home
Class 12
MATHS
If a^(x) = b , b^(y) = c, c^(z) = a, ...

If ` a^(x) = b , b^(y) = c, c^(z) = a, x = log_(b) a^(k_(1)) , y = log_(c)b^(k_(2)), z = log _(a) c^(k_(3)), ` , then find ` K_(1) K_(2) K_(3)` .

Text Solution

Verified by Experts

We have ,
` a^(x) = b,b^(y) c and c^(z) = a`
` rArr a = c^(2) =(b^(y))^(z) = (a^(x))^(yz) = a^(ayz)`
` rArr xyz = 1 `
Also xyz ` rArr a = c^(2) =(b^(y))^(z) = (a^(x))^(yz) = a^(ayz)`
` rArr xyz = 1 `
Also xyz ` log _(b) a^(k_(1)) log_(c) b^(k_(2)). logc^(k_(3))`
` k_(1)k_(2) k_(3) log_(b^(a))log_(c^(b)) . log_(a^(c))= k_(1)k_(2)k_(3) = 1`
`rArr k_(1) k_(2)k_(3) = 1`
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    AAKASH INSTITUTE|Exercise Try Yourself|85 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE|Exercise Assignment (SECTION - A) One option is correct|60 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE|Exercise Assignment (Section - J) Aakash Challengers Questions|8 Videos
  • SETS

    AAKASH INSTITUTE|Exercise SECTION-I(Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

IF a^x=b,b^y=c,c^z=a,x=(log_ba)^(k1),y=(log_cb)^(k2),z=(log_ac)^(k3) , find the minimum value of 3k_1+6k_2+12k_3 .

If x = log_(c) b + log_(b) c, y = log_(a) c + log_(c) a, z = log_(b) a + log_(a) b, then x^(2) + y^(2) + z^(2) - 4 =

If x=log_(b)a,y=log_(c)b,z=log_(a)c then xyz=

log_(b^(n))^(a^(m))=K*log_(b)^(a) where K is

If x,y,z are in G.P.nad a^(x)=b^(y)=c^(z), then log_(b)a=log_(a)c b.log_(c)b=log_(a)c c.log_(b)a=log_(c)b d.none of these

If x,y,z are in G.P.and a^(x)=b^(y)=c^(z), then (a) log ba=log_(a)c(b)log_(c)b=log_(a)c(c)log_(b)a=log_(c)b(d) none of these

If a^x=b , b^y=c ,c^z=a and x=(log)_b a^2; y=(log)_c b^3& z=(log)_a c^k , where a,b, c >0 & a , b , c!=1 then k is equal to a.1/5 b. 1/6 c.(log)_(64)2 d. (log)_(32)2