Home
Class 12
MATHS
Prove that loge ((n^2)/(n^2-1))=1/(n^2)...

Prove that `log_e ((n^2)/(n^2-1))=1/(n^2)+1/(2n^4)+1/(3n^6)+........oo`

Text Solution

Verified by Experts

L.H.S. ` log_(n) ((n^(2))/(n^(2) -1)) =- log_(e) ((n^(2) -1)/(n^(2))) `
` = - log_(e) (1-(1)/(n^(2))) " "- lt (1)/(n^(2) )lt 1 `
` [ - (1)/(n^(2)) - (1)/(2n^(4)) - (1)/(3n^(6)) - ...oo]`
`= (1)/(n^(2)) + (1)/(2.n^(4))+(1)/ (3.n^(6)) + ...oo` .
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    AAKASH INSTITUTE|Exercise Try Yourself|85 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE|Exercise Assignment (SECTION - A) One option is correct|60 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE|Exercise Assignment (Section - J) Aakash Challengers Questions|8 Videos
  • SETS

    AAKASH INSTITUTE|Exercise SECTION-I(Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

Prove that : 1^(2)+2^(2)+3^(2)+...+n^(2)=(n(n+1)(2n+1))/(6)

Prove that ((2n+1)!)/(n!)=2^(n){1.3.5(2n-1)(2n+1)}

1+((log n)^(2))/(2!)+((Log n)^(4))/(4!)+...... oo =

Lim {x rarr oo} {(1+ (1) / (n ^ (2))) ^ ((2) / (n ^ (2))) (1+ (4) / (n ^ (2)) ) ^ ((4) / (n ^ (2))) ...... (1+ (n ^ (2)) / (n ^ (2))) ^ (2 (n) / (n ^ (2)))}

Prove that ((2n+1)!)/(n!)=2^(n)[1.3.5.....(2n-1)*(2n+1)]

Prove that (1)/(n!)+(1)/(2!(n-2)!)+(1)/(4!(n-4)!)+...=(1)/(n!)2^(n-1)

Show that, lim_(n to oo)((1)/(n + 1)+(1)/(n+2)+…+(1)/(6n))=log 6 .

Prove that ((2n)!)/(2^(2n)(n!)^(2))<=(1)/(sqrt(3n+1)) for all n in N

Prove that: I_(n)=int_(0)^(oo)x^(2n+1)e^(-x^(2))dx=(n!)/(2),n in N