Home
Class 12
MATHS
The series expansion of log(e) [(1 + x...

The series expansion of ` log_(e) [(1 + x^((1 + x))(1-x)^(1-x)]` is
(1)`2[(x^(2))/(1.2) + (x^(4))/(3.4)+(x^(6))/(5.6)+...]`
(2) `[(x^(2))/(1.2) + (x^(4))/(3.4)+(x^(6))/(5.6)+...]`
(3)`2[(x^(2))/(1.2) + (x^(4))/(2.3)+(x^(6))/(3.4)+...]`
(4)`2[(x^(2))/(1.2) -(x^(4))/(2.3)+(x^(6))/(3.4)-...]`

Text Solution

Verified by Experts

L.H.S = `(1 + x) log_(e) (1+ x) + (1 - x) log_(e) (1 - x)` ltbrge` log_(e) (1 + x)(1 -x) + xlog_(e) ((1 + x)/(1 - x))`
= ` - 2[ (x^(2))/(2) + (x^(4))/(4) + (x^(6))/(6) + ...oo] + 2 xx[ x + (x^(3))/(3) + (x^(5))/(5) + ...oo]`
`2[ x^(2) (1 - (1)/(2)) + x^(4) ((1)/(3) - (1)/(4)) + x^(6) ((1)/(5) - (1)/(6)) + ...oo]` .
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    AAKASH INSTITUTE|Exercise Try Yourself|85 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE|Exercise Assignment (SECTION - A) One option is correct|60 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE|Exercise Assignment (Section - J) Aakash Challengers Questions|8 Videos
  • SETS

    AAKASH INSTITUTE|Exercise SECTION-I(Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

(6x-7)/(2)+(9-2x)/(5)=12+(x)/(4)-(2)/(3)+(4x)/(3)

sin^(-1)(x-(x^(2))/(2)+(x^(3))/(4)-...)+cos^(-1)(x^(2)-(x^(4))/(2)+(x^(6))/(4)-...*)=(pi)/(2) for 0<|x|

Take away: (6)/(5)x^(2)-(4)/(5)x^(3)+(5)/(6)+(3)/(2)x om (x^(3))/(3)-(5)/(2)x^(2)+(3)/(5)x+(1)/(4)

(x^(2)+(1)/(x^(2))+2)+(x^(4)+(1)/(x^(4))+5)+(x^(6)+(1)/(x^(6))+8)+

The coefficient of x^(5) in the expansion of (1+(x)/(1!)+(x^(2))/(2!)+(x^(3))/(3!)+(x^(4))/(4!)+(x^(5))/(5!))^(2) is

Add: (3x^(2) - (1)/(5)x + (7)/(3)) + ((-1)/(4)x^(2) + (1)/(3)x - (1)/(6)) + (-2x^(2) - (1)/(2)x + 5)

For 0le|x|lesqrt(2) , if cos^(-1)(x^(2)-(x^(4))/(2)+(x^(6))/(4)-…)+sin^(-1)(x-(x^(2))/(2)+(x^(3))/(4))-…)=(pi)/(2) , then x=

Expand using binomial theorem: (i) (1-2x)^(4) " " (ii) (x+2y)^(5) (iii) (x-(1)/(x))^(6) " "(iv) ((2x)/(3)=(3)/(2x))^(5) (v) (x^(2) +(2)/(x))^(6)" "(vi) (1+(1)/(x^(2)))^(4)