Home
Class 12
MATHS
Let S = (2+6)/(4^(100)) + (2 + 2 xx 6)/...

Let ` S = (2+6)/(4^(100)) + (2 + 2 xx 6)/(4^(99)) + (2 + 3xx 6)/(4^(98)) + …+ (2 + 99 xx6)/(4^(2)) + (2 + 100xx 6)/(4)` . Then 3S equals .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum \( S \) given by: \[ S = \frac{2 + 6}{4^{100}} + \frac{2 + 2 \times 6}{4^{99}} + \frac{2 + 3 \times 6}{4^{98}} + \ldots + \frac{2 + 99 \times 6}{4^{2}} + \frac{2 + 100 \times 6}{4} \] We can rewrite the terms in the series: \[ S = \sum_{n=1}^{100} \frac{2 + n \cdot 6}{4^{101-n}} \] This can be separated into two parts: \[ S = \sum_{n=1}^{100} \frac{2}{4^{101-n}} + \sum_{n=1}^{100} \frac{n \cdot 6}{4^{101-n}} \] Let’s denote the first sum as \( S_1 \) and the second sum as \( S_2 \). ### Step 1: Calculate \( S_1 \) The first sum \( S_1 \) can be expressed as: \[ S_1 = 2 \sum_{n=1}^{100} \frac{1}{4^{101-n}} = 2 \sum_{k=1}^{100} \frac{1}{4^k} \] This is a geometric series with first term \( a = \frac{1}{4} \) and common ratio \( r = \frac{1}{4} \). The number of terms is 100. The sum of a geometric series is given by: \[ \text{Sum} = \frac{a(1 - r^n)}{1 - r} \] Applying this formula: \[ S_1 = 2 \cdot \frac{\frac{1}{4}(1 - (\frac{1}{4})^{100})}{1 - \frac{1}{4}} = 2 \cdot \frac{\frac{1}{4}(1 - \frac{1}{4^{100}})}{\frac{3}{4}} = \frac{2}{3}(1 - \frac{1}{4^{100}}) \] ### Step 2: Calculate \( S_2 \) Now, we calculate \( S_2 \): \[ S_2 = 6 \sum_{n=1}^{100} \frac{n}{4^{101-n}} = 6 \sum_{k=1}^{100} \frac{k}{4^k} \] To find this sum, we can use the formula for the sum of \( n \cdot r^n \): \[ \sum_{k=1}^{n} kx^k = \frac{x(1 - (n+1)x^n + nx^{n+1})}{(1-x)^2} \] For our case, \( x = \frac{1}{4} \) and \( n = 100 \): \[ S_2 = 6 \cdot \frac{\frac{1}{4}(1 - 101 \cdot \frac{1}{4^{100}} + 100 \cdot \frac{1}{4^{101}})}{(1 - \frac{1}{4})^2} \] Calculating the denominator: \[ (1 - \frac{1}{4})^2 = \left(\frac{3}{4}\right)^2 = \frac{9}{16} \] Thus, \[ S_2 = 6 \cdot \frac{\frac{1}{4}(1 - 101 \cdot \frac{1}{4^{100}} + 100 \cdot \frac{1}{4^{101}})}{\frac{9}{16}} = 6 \cdot \frac{4}{9}(1 - 101 \cdot \frac{1}{4^{100}} + 100 \cdot \frac{1}{4^{101}}) \] ### Step 3: Combine \( S_1 \) and \( S_2 \) Now, we can combine \( S_1 \) and \( S_2 \): \[ S = S_1 + S_2 = \frac{2}{3}(1 - \frac{1}{4^{100}}) + 6 \cdot \frac{4}{9}(1 - 101 \cdot \frac{1}{4^{100}} + 100 \cdot \frac{1}{4^{101}}) \] ### Step 4: Calculate \( 3S \) Finally, we need to find \( 3S \): \[ 3S = 3 \left( \frac{2}{3}(1 - \frac{1}{4^{100}}) + 6 \cdot \frac{4}{9}(1 - 101 \cdot \frac{1}{4^{100}} + 100 \cdot \frac{1}{4^{101}}) \right) \] This will give us the final answer.
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    AAKASH INSTITUTE|Exercise Assignment (SECTION - J) Aakash Challengers|12 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE|Exercise Assignment (SECTION - H) True/False|5 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE|Exercise Assignment (Section - J) Aakash Challengers Questions|8 Videos
  • SETS

    AAKASH INSTITUTE|Exercise SECTION-I(Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

(2^3xx3^4xx4^2)/(32xx6)

The value of 2xx 2 + 4 xx 4 + 2 " of " 3 xx 6 - 7 xx (5 + 4 -: 2 ) is :

Simplify : ((-2)^3 xx (-2)^7)/(3 xx (4)^6)

6(6)/(6)xx5(1)/(3)+17(2)/(3)xx4(1)/(4)=?

[(11)^(3)xx(6)^(2)]+(4)^(3)=?

If 4 xx 3 xx 2 xx 6 = 6234 and 6 xx 3 xx 1 xx 2 = 2136 , then 9 xx 4 xx 7 xx 1 = ?

Calculate the following a. (6.7 xx 10^(5)) xx (4.6 xx 10^(4)) b. (7.6 xx 10^(7)) xx (3.8 xx 10^(-4)) c. (6.8 xx 10^(-3)) xx (5.2 xx 10^(-4)) d. (6.7 xx 10^(5)) / (4.6 xx 10^(4)) e. (7.6 xx 10^(7)) / (3.8 xx 10^(-4)) f. (6.8 xx 10^(-3)) / (3.8 xx 10^(-4)) g. 7.65 xx 10^(2) + 2.72 xx 10^(3) h. 7.87 xx 10^(-4) - 2.61 xx 10^(-5)