Home
Class 12
MATHS
The value of sum(n=1)^oo\ (n^2+1)/((n+2)...

The value of `sum_(n=1)^oo\ (n^2+1)/((n+2)n!)` is

A

` 9 - e`

B

`(9)/(2) - e `

C

`(9)/(2) + e`

D

` 9 + e`

Text Solution

Verified by Experts

The correct Answer is:
2
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    AAKASH INSTITUTE|Exercise Assignment (SECTION - I) Subjective|10 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE|Exercise Assignment (Section - J) Aakash Challengers Questions|8 Videos
  • SETS

    AAKASH INSTITUTE|Exercise SECTION-I(Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(n=1)^(oo)(4n-2)/(3^(n))

The value of sum_(n=1)^(oo)(1)/(2n(2n+1)) is equal to

sum_(n=1)^oo (n^2+6n+10)/((2n+1)!)

For x in Rwith|x|<1, the value of sum_(n=0)^(oo)(1+n)x^(n) is

The value of sum_(n=1)^(oo)backslash(n^(2)+1)/((n+2)n!) is

The value of sum_(n=1)^(oo)(-1)^(n+1)((n)/(5^(n))) equals

If sum_(r=1)^(n)t_(r)=(1)/(4)n(n+1)(n+2)(n+3) then value of (1)/(sum_(r=1)^(oo)((1)/(t_(r)))) is

If sum_(r=1)^(n)T_(r)=(n(n+1)(n+2))/(6), then the value of sum_(r=1)^(oo)((1)/(T_(r))) is equal to

The value of sum_(n=3)^(oo)(1)/(n^(5) - 5n^(3) +4 n) is equal to -

sum_(n=1)^(oo)(n^(2))/(n!) is equal to