Home
Class 12
MATHS
The sum S(n) where T(n) = (-1)^(n) (n^(...

The sum `S_(n)` where `T_(n) = (-1)^(n) (n^(2) + n +1)/( n!) ` is

A

`((-1)^(n))/(n-1!)-((-1)^(n))/(n+1)!)`

B

`[((-1)^(n))/(n!) - ((-1)^(n))/(n-1!)]-1`

C

`[((-1)^(n +1))/(n+1!) - ((-1)^(n-1))/((n-1)!)]`

D

`[((-1)^(n))/(n!) -((-1)^(n-1))/(( n-1)!)] -1`

Text Solution

Verified by Experts

The correct Answer is:
4
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    AAKASH INSTITUTE|Exercise Assignment (SECTION - I) Subjective|10 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE|Exercise Assignment (Section - J) Aakash Challengers Questions|8 Videos
  • SETS

    AAKASH INSTITUTE|Exercise SECTION-I(Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

Sum of the series S_(n) =(n) (n) + (n-1) (n+1) + (n-2) (n+2) + …+ 1(2n-1) is

The sum S = lim_ (n rarr oo) [(1) / (n + 1) + (1) / (n + 2) + (1) / (n + 3) + ----- + (1) / (2n)]

If S_ (n) = (n* ( 2 n^ 2 + 9 n + 13 ))/ 6 ( S_ (n) = sum of first n terms of the sequence) then the value of ∑_ (i = 1)^(oo) 1/ ( r √ (S_ r − S_ (r − 1))

Define a sequence {S_(n)} of real numbers by S_(n) = sum_(k=0)^(n) (1)/(sqrt(n^(2)+k)) , for n ge 1 . Then lim_(n rarr infty) S_(n)