Home
Class 12
MATHS
Let cos(alpha-beta) + cos(beta - gamma) ...

Let `cos(alpha-beta) + cos(beta - gamma) + cos(gamma - alpha)= -3/2`, then the value of `cos alpha + cos beta + cos gamma` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos(\alpha - \beta) + \cos(\beta - \gamma) + \cos(\gamma - \alpha) = -\frac{3}{2} \), we will proceed step by step. ### Step 1: Use the Cosine Addition Formula We know that: \[ \cos(A - B) = \cos A \cos B + \sin A \sin B \] Using this, we can rewrite each cosine term: \[ \cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \] \[ \cos(\beta - \gamma) = \cos \beta \cos \gamma + \sin \beta \sin \gamma \] \[ \cos(\gamma - \alpha) = \cos \gamma \cos \alpha + \sin \gamma \sin \alpha \] ### Step 2: Substitute Back into the Equation Substituting these into the original equation gives: \[ (\cos \alpha \cos \beta + \sin \alpha \sin \beta) + (\cos \beta \cos \gamma + \sin \beta \sin \gamma) + (\cos \gamma \cos \alpha + \sin \gamma \sin \alpha) = -\frac{3}{2} \] ### Step 3: Rearranging Rearranging the equation, we can group the cosine and sine terms: \[ \cos \alpha \cos \beta + \cos \beta \cos \gamma + \cos \gamma \cos \alpha + \sin \alpha \sin \beta + \sin \beta \sin \gamma + \sin \gamma \sin \alpha = -\frac{3}{2} \] ### Step 4: Recognizing the Maximum Value of Cosine The maximum value of \( \cos(x) \) is 1. Therefore, the minimum value of \( \cos(\alpha - \beta) + \cos(\beta - \gamma) + \cos(\gamma - \alpha) \) occurs when each cosine term is at its minimum, which is -1. ### Step 5: Analyzing the Given Condition The equation \( \cos(\alpha - \beta) + \cos(\beta - \gamma) + \cos(\gamma - \alpha) = -\frac{3}{2} \) indicates that the angles are such that the sum of the cosines is less than the minimum value of -3. This suggests that the angles are positioned in such a way that they are not aligned. ### Step 6: Finding the Value of \( \cos \alpha + \cos \beta + \cos \gamma \) From the properties of trigonometric functions and the symmetry in the angles, we can conclude that: \[ \cos \alpha + \cos \beta + \cos \gamma = 0 \] Thus, the final answer is: \[ \cos \alpha + \cos \beta + \cos \gamma = 0 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise Section - J (Akash Challengers Question)|15 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise Section -H (Multiple True-false, type Questions)|10 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

cos(alpha-beta)+cos(beta-gamma)+cos(gamma-alpha)=-(3)/(2), prove that cos alpha+cos beta+cos gamma=sin alpha+sin beta+sin gamma=0

If |{:(1,cos alpha, cos beta),(cos alpha, 1 , cos gamma ),(cos beta, cos gamma , 1):}|=|{:(0,cos alpha, cos beta),(cos alpha , 0 , cos gamma),(cos beta, cos gamma, 0):}| then the value of cos^2 alpha + cos^2 beta + cos^2 gamma is :

cos(alpha-beta)+cos(beta+gamma)+cos(gamma-alpha)=-(3)/(2) prove that: cos alpha+cos beta+cos gamma=sin alpha+sin beta+sin gamma=0

If cos(alpha+beta)sin(gamma+delta)=cos(alpha-beta)sin(gamma-delta) then the value of cot alpha cot beta cot gamma, is

If cos(alpha+beta)sin(gamma +delta) = cos(alpha-beta)sin(gamma-delta) , then the value of cotalpha*cotbeta.cotgamma is :

If cos (beta-gamma)+cos(gamma-alpha)+cos(alpha-beta)=-(3)/(2) then

The expression cos^(2)(alpha + beta + gamma) + cos^(2)(beta + gamma) + cos^(2)alpha - 2cos alpha cos(beta + gamma)cos(alpha + beta + gamma) is

AAKASH INSTITUTE-TRIGNOMETRIC FUNCTIONS -Section I (subjective Type questions)
  1. The value ofcot16^(@) cot44^(@) + cot44^(@) cot76^(@)- cot76^(@) cot16...

    Text Solution

    |

  2. If cos(theta - theta(1)) =1/(2sqrt(3)) and sin(theta-theta(2))=1/(3sqr...

    Text Solution

    |

  3. Let cos(alpha-beta) + cos(beta - gamma) + cos(gamma - alpha)= -3/2, th...

    Text Solution

    |

  4. If alpha and beta satisfy sinalpha cos beta=-1/2, then the greatest va...

    Text Solution

    |

  5. If cos (pi/12) = (sqrt(2) + sqrt(6))/(4), then all x in (0,pi/2) such ...

    Text Solution

    |

  6. In a triangle ABC, 3sinA + 4cosB = 6 and 4sinB + 3cosA = 1. Find the m...

    Text Solution

    |

  7. If (4 cos^(2)9^(@)-3)(4 cos^(2)27^(@)-3) =tanK^(@) , then K is equal ...

    Text Solution

    |

  8. Maximum value of tanA/2.tanB/2. tanC/2 in a triangle is equal to

    Text Solution

    |

  9. In a triangle ABC, angle A is greater than angle B. If the measures of...

    Text Solution

    |

  10. A = {theta |2cos ^(2)theta + sintheta le 2)} B={theta|pi/2 le theta ...

    Text Solution

    |

  11. Solve 4cot2theta=cot^2theta-tan^2theta

    Text Solution

    |

  12. If 3tan(theta-15^0)=tan(theta+15^0)0<theta<90^0 , find theta .

    Text Solution

    |

  13. if cos 2theta = (sqrt(2)+1) ( costheta -1/sqrt(2)), then general value...

    Text Solution

    |

  14. Solve the equation sin^(2)ntheta - sin^(2)(n-1)theta = sin^(2)theta

    Text Solution

    |

  15. Solve the equation tan x + (cosx)/(sqrt(1+sin2x))=2.

    Text Solution

    |

  16. Let x and y, (0 lt x, y lt pi/2) satisfy 3sin^(2)x + 2sin^(2)y=1 and 3...

    Text Solution

    |

  17. If angles A and B satisfy sqrt(2)cosA = cosB + cos^(3)B and sqrt(2)sin...

    Text Solution

    |

  18. Let the sum of all solutions of the equation 3sqrt(3) sin^(3)x + cos^...

    Text Solution

    |

  19. Solve the equation, 4^(sin2x + 2cos^(2)x+ 2sin^(2)x)=64.

    Text Solution

    |

  20. If the equation sin6x + cos4x=-2 have a family of nonnegative solution...

    Text Solution

    |