Home
Class 12
MATHS
Let f(x)=(9^(x))/(9^(x)+3) Let h(x)=in...

Let `f(x)=(9^(x))/(9^(x)+3)`
Let `h(x)=intf(x)dx`. If `h(log_(9)6)=1`, then `h(x)=`

A

`ln (9^(x)+3)`

B

`log_(6)(9^(x)+3)`

C

`(log_(6)(9^(x)+3))/(ln9)`

D

`log_(9)(9^(x)+3)`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE|Exercise Assertion-Reason Type Questions|12 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Integar Type Questions|7 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Objective Type Questions (More than one answer)|29 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

let f(x)=(9^(x))/(9^(x)+3)then f(x)+f(1-x)

If f(x)=(x^(2)-1)/x^(3) , then intf(x)dx is

If x^(log_(3)x)=9, then x can be

Let f(x)=(9^(x))/(9^(x)+3) If g(x)=int((1)/(11)+(2)/(11)+....+(10)/(11))dx , then

int(log(3x)dx)/(log(9x)x)=

Let f(x)=sinx,g(x)=x^(2) and h(x)=log_(e)x. If F(x)=("hog of ")(x)," then "F''(x) is equal to

Let f(x)=x, g(x)=1//x and h(x)=f(x) g(x). Then, h(x)=1, if

Let h(x)=6^((3x^(3)+8x)) .Find h'(x)