Home
Class 12
MATHS
The number of values of x in [0, 4 pi] s...

The number of values of x in `[0, 4 pi]` satisfying the inequation `|sqrt(3)"cos" x - "sin"x|ge2`, is

A

0

B

2

C

4

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( |\sqrt{3} \cos x - \sin x| \geq 2 \) for \( x \) in the interval \( [0, 4\pi] \), we can follow these steps: ### Step 1: Rewrite the Inequality We start with the inequality: \[ |\sqrt{3} \cos x - \sin x| \geq 2 \] ### Step 2: Break Down the Absolute Value This absolute value inequality can be split into two cases: 1. \( \sqrt{3} \cos x - \sin x \geq 2 \) 2. \( \sqrt{3} \cos x - \sin x \leq -2 \) ### Step 3: Solve the First Case For the first case: \[ \sqrt{3} \cos x - \sin x \geq 2 \] Rearranging gives: \[ \sqrt{3} \cos x \geq \sin x + 2 \] ### Step 4: Solve the Second Case For the second case: \[ \sqrt{3} \cos x - \sin x \leq -2 \] Rearranging gives: \[ \sqrt{3} \cos x \leq \sin x - 2 \] ### Step 5: Divide by 2 To simplify the expressions, we can divide the entire inequality by 2: 1. For the first case: \[ \frac{\sqrt{3}}{2} \cos x - \frac{1}{2} \sin x \geq 1 \] 2. For the second case: \[ \frac{\sqrt{3}}{2} \cos x - \frac{1}{2} \sin x \leq -1 \] ### Step 6: Use Trigonometric Identities We can express \( \frac{\sqrt{3}}{2} \) and \( \frac{1}{2} \) in terms of cosine and sine of \( \frac{\pi}{6} \): \[ \frac{\sqrt{3}}{2} \cos x - \frac{1}{2} \sin x = \cos\left(\frac{\pi}{6}\right) \cos x - \sin\left(\frac{\pi}{6}\right) \sin x \] This can be rewritten using the cosine of a sum: \[ \cos\left(x + \frac{\pi}{6}\right) \] ### Step 7: Rewrite the Inequalities Now we have: 1. \( \cos\left(x + \frac{\pi}{6}\right) \geq 1 \) 2. \( \cos\left(x + \frac{\pi}{6}\right) \leq -1 \) ### Step 8: Analyze the Cosine Function The cosine function equals 1 at: \[ x + \frac{\pi}{6} = 2n\pi \quad (n \in \mathbb{Z}) \] Thus: \[ x = 2n\pi - \frac{\pi}{6} \] The cosine function equals -1 at: \[ x + \frac{\pi}{6} = (2n + 1)\pi \quad (n \in \mathbb{Z}) \] Thus: \[ x = (2n + 1)\pi - \frac{\pi}{6} \] ### Step 9: Find Values in the Interval Now we need to find values of \( x \) in the interval \( [0, 4\pi] \). 1. For \( x = 2n\pi - \frac{\pi}{6} \): - \( n = 0: x = -\frac{\pi}{6} \) (not valid) - \( n = 1: x = 2\pi - \frac{\pi}{6} = \frac{12\pi}{6} - \frac{\pi}{6} = \frac{11\pi}{6} \) (valid) - \( n = 2: x = 4\pi - \frac{\pi}{6} = \frac{24\pi}{6} - \frac{\pi}{6} = \frac{23\pi}{6} \) (valid) 2. For \( x = (2n + 1)\pi - \frac{\pi}{6} \): - \( n = 0: x = \pi - \frac{\pi}{6} = \frac{5\pi}{6} \) (valid) - \( n = 1: x = 3\pi - \frac{\pi}{6} = \frac{18\pi}{6} - \frac{\pi}{6} = \frac{17\pi}{6} \) (valid) - \( n = 2: x = 5\pi - \frac{\pi}{6} = \frac{30\pi}{6} - \frac{\pi}{6} = \frac{29\pi}{6} \) (not valid) ### Step 10: Count the Valid Solutions The valid solutions found are: 1. \( \frac{5\pi}{6} \) 2. \( \frac{11\pi}{6} \) 3. \( \frac{17\pi}{6} \) 4. \( \frac{23\pi}{6} \) Thus, the total number of solutions is **4**.

To solve the inequality \( |\sqrt{3} \cos x - \sin x| \geq 2 \) for \( x \) in the interval \( [0, 4\pi] \), we can follow these steps: ### Step 1: Rewrite the Inequality We start with the inequality: \[ |\sqrt{3} \cos x - \sin x| \geq 2 \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|4 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|66 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    OBJECTIVE RD SHARMA|Exercise Exercise|22 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

The number of values of x in [0,2 pi] satisfying the equation |cos x sin x|>=sqrt(2) is

The number of values of x in [0,2pi] satisfying the equation 3cos2x-10cosx+7=0 is

The number of values of x in (0, pi) satisfying the equation (sqrt(3) "sin" x + "cos" x) ^(sqrt(sqrt(3)"sin" 2x -"cos" 2x+ 2)) = 4 , is

Number of values of x lying in [0,2 pi] and satisfying the equation sin x+cos x=1, is

The number of values of x in the interval [0, 5pi] satisfying the equation 3 sin^(2)x - 7 sin x + 2 = 0 is

Find the number of values of x in the internal [ 0, 5 pi] satisfying the equation 3 sin^(2) x - 7 sin x + 2 = 0

OBJECTIVE RD SHARMA-TRIGONOMETRIC EQUATIONS AND INEQUATIONS-Chapter Test
  1. The number of values of x in [0, 4 pi] satisfying the inequation |sqrt...

    Text Solution

    |

  2. If |k|=5 and 0^(@) le theta le 360^(@) , then the number of different...

    Text Solution

    |

  3. The number of all the possible triplets (a1,a2,a3) such that a1+a2cos(...

    Text Solution

    |

  4. The number of all possible 5-tuples (a(1),a(2),a(3),a(4),a(5)) such th...

    Text Solution

    |

  5. The general solution of the equation "cos" x"cos"6x = -1, is

    Text Solution

    |

  6. The values of x satisfying the system of equation 2^("sin" x + "cos"...

    Text Solution

    |

  7. The general solution of the equation "tan" 3x = "tan" 5x, is

    Text Solution

    |

  8. The number of all possible ordered pairs (x, y) x, y in R satisfying t...

    Text Solution

    |

  9. If the expression ([s in(x/2)+cos(x/2)-i t a n(x)])/([1+2is in(x/2)])...

    Text Solution

    |

  10. If the equation "sec" theta + "cosec" theta =c has real roots between ...

    Text Solution

    |

  11. If the equation "sec" theta + "cosec" theta =c has real roots between ...

    Text Solution

    |

  12. If theta(1), theta(2), theta(3), theta(4) are roots of the equation "s...

    Text Solution

    |

  13. If sin(pi cos theta) = cos(pi sin theta), then of the value cos(th...

    Text Solution

    |

  14. If "tan" (pi "cos" theta) = "cot"(pi "sin" theta), then the value(s) ...

    Text Solution

    |

  15. The general solution of "tan" ((pi)/(2)"sin" theta) ="cot"((pi)/(2)"co...

    Text Solution

    |

  16. The most general value of theta which satisfy both the equation cos th...

    Text Solution

    |

  17. The number of roots of the equation x +2"tan"x = (pi)/(2) in the inter...

    Text Solution

    |

  18. If "sin" (pi "cot" theta) = "cos" (pi "tan" theta), "then cosec" 2 the...

    Text Solution

    |

  19. The number of distinct roots of the equation A"sin"^(3) x + B"cos"^(3...

    Text Solution

    |

  20. The values of x between 0 and 2pi which satisfy the equation sinxsqrt(...

    Text Solution

    |

  21. If Cos20^0=k and Cosx=2k^2-1, then the possible values of x between 0^...

    Text Solution

    |