Home
Class 12
MATHS
If alpha is a root of 25"cos"^(2) theta+...

If `alpha` is a root of `25"cos"^(2) theta+ 5"cos" theta-12 = 0, (pi)/(2) lt alpha lt pi, " then sin"2 alpha` is equal to

A

`(24)/(25)`

B

`-(24)/(25)`

C

`(13)/(18)`

D

`-(13)/(18)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sin 2\alpha \) given that \( \alpha \) is a root of the equation \( 25 \cos^2 \theta + 5 \cos \theta - 12 = 0 \) and \( \frac{\pi}{2} < \alpha < \pi \). ### Step 1: Solve the quadratic equation for \( \cos \theta \) The given equation is: \[ 25 \cos^2 \theta + 5 \cos \theta - 12 = 0 \] This is a quadratic equation in terms of \( \cos \theta \). We can use the quadratic formula: \[ \cos \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 25 \), \( b = 5 \), and \( c = -12 \). ### Step 2: Substitute the values into the quadratic formula Substituting the values: \[ \cos \theta = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 25 \cdot (-12)}}{2 \cdot 25} \] Calculating the discriminant: \[ 5^2 - 4 \cdot 25 \cdot (-12) = 25 + 1200 = 1225 \] Now substituting back: \[ \cos \theta = \frac{-5 \pm \sqrt{1225}}{50} \] Since \( \sqrt{1225} = 35 \), we have: \[ \cos \theta = \frac{-5 \pm 35}{50} \] ### Step 3: Calculate the two possible values for \( \cos \theta \) Calculating the two cases: 1. \( \cos \theta = \frac{-5 + 35}{50} = \frac{30}{50} = \frac{3}{5} \) 2. \( \cos \theta = \frac{-5 - 35}{50} = \frac{-40}{50} = -\frac{4}{5} \) ### Step 4: Determine which value is valid for \( \alpha \) Given that \( \frac{\pi}{2} < \alpha < \pi \), \( \alpha \) is in the second quadrant where \( \cos \theta \) is negative. Therefore, we take: \[ \cos \alpha = -\frac{4}{5} \] ### Step 5: Find \( \sin \alpha \) Using the Pythagorean identity: \[ \sin^2 \alpha + \cos^2 \alpha = 1 \] Substituting \( \cos \alpha = -\frac{4}{5} \): \[ \sin^2 \alpha + \left(-\frac{4}{5}\right)^2 = 1 \] \[ \sin^2 \alpha + \frac{16}{25} = 1 \] \[ \sin^2 \alpha = 1 - \frac{16}{25} = \frac{25}{25} - \frac{16}{25} = \frac{9}{25} \] Taking the positive root (since sine is positive in the second quadrant): \[ \sin \alpha = \frac{3}{5} \] ### Step 6: Calculate \( \sin 2\alpha \) Using the double angle formula: \[ \sin 2\alpha = 2 \sin \alpha \cos \alpha \] Substituting the values: \[ \sin 2\alpha = 2 \cdot \frac{3}{5} \cdot \left(-\frac{4}{5}\right) = 2 \cdot \frac{3 \cdot (-4)}{25} = \frac{-24}{25} \] ### Final Answer Thus, the value of \( \sin 2\alpha \) is: \[ \sin 2\alpha = -\frac{24}{25} \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|4 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    OBJECTIVE RD SHARMA|Exercise Exercise|22 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If alpha is a root of 25cos^(2)theta+5cos theta-12=0,(pi)/(2)

If a is a root of 25cos^(2)theta+5cos theta-12=0;(pi)/(2)

Directions (FOR NEXT TWO): Let alpha be the root of the equation 25cos^2theta + 5costheta - 12 = 0 , where (pi)/(2) lt alpha lt pi . What is sin 2 alpha equal to?

Directions (FOR NEXT TWO): Let alpha be the root of the equation 25cos^2theta + 5costheta - 12 = 0 , where (pi)/(2) lt alpha lt pi . What is the tan alpha equal to?

Solve 5 cos 2 theta+2 "cos"^(2) theta/2 +1=0, -pi lt theta lt pi .

If cosec theta - cot theta = 1/2, 0 lt theta lt pi/2, then cos theta is equal to

If sin alpha = -3/5 , pi lt alpha lt 3pi/2 then cos alpha/2 = 1/sqrt10

OBJECTIVE RD SHARMA-TRIGONOMETRIC EQUATIONS AND INEQUATIONS-Exercise
  1. If alpha,beta are the different values of x satisfying acosx+bsinx=c t...

    Text Solution

    |

  2. The equation a "sin" x+b "cos" x = c, " where"|c| gt sqrt(a^(2) + b^(2...

    Text Solution

    |

  3. If alpha is a root of 25"cos"^(2) theta+ 5"cos" theta-12 = 0, (pi)/(2)...

    Text Solution

    |

  4. If "cos 3x + "sin" (2x - (7pi)/(6)) =-2, then x =

    Text Solution

    |

  5. The number of solutions of 2"cos"^(2)((x)/(2))"sin"^(2) x =x^(2) + (1)...

    Text Solution

    |

  6. If A and B are acute positive angles satisfying the equations 3 "sin"^...

    Text Solution

    |

  7. The equation "sin" theta = x +(p)/(x) for real values of x is possible...

    Text Solution

    |

  8. If "sin" A = "sin"B, "cos"A = "cos"B, then the value of A im terms of ...

    Text Solution

    |

  9. Solve 5 cos 2 theta+2 "cos"^(2) theta/2 +1=0, -pi lt theta lt pi.

    Text Solution

    |

  10. If (1+tantheta)(1+tanphi)=2 then theta+phi=

    Text Solution

    |

  11. The general solution of "tan" 3x =1, is

    Text Solution

    |

  12. If 1+sintheta+sin^2theta+sin^3theta+..to oo=4+2sqrt3 0<theta<pi, t...

    Text Solution

    |

  13. If alpha and beta are the solutions of the equation atan theta+ b s...

    Text Solution

    |

  14. Solve sinx+siny=sin(x+y)a n d|x|+|y|=1

    Text Solution

    |

  15. The expression (1 + tan x + tan^2 x)(1-cot x + cot^2 x) has the positi...

    Text Solution

    |

  16. The equation K-sin theta+ cos 2theta= 2k-7 possesses a real solution i...

    Text Solution

    |

  17. The equation "sin"^(6) x + "cos"^(6) x = lambda, has a solution if

    Text Solution

    |

  18. If y + "cos" theta = "sin" theta has a real solution, then

    Text Solution

    |

  19. The solution set of the equation 4 "sin" theta "cos" theta- 2 "cos" th...

    Text Solution

    |

  20. The most general solution of "tan " theta = -1, "cos" theta = (1)/(sqr...

    Text Solution

    |