Home
Class 11
PHYSICS
Integrate the following : int(dt)/((6t-1...

Integrate the following `:` `int(dt)/((6t-1))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{dt}{6t - 1} \), we can follow these steps: ### Step 1: Identify the integral We start with the integral: \[ I = \int \frac{dt}{6t - 1} \] ### Step 2: Use substitution To simplify the integral, we can use a substitution. Let: \[ y = 6t - 1 \] Then, we differentiate \( y \) with respect to \( t \): \[ dy = 6 \, dt \quad \Rightarrow \quad dt = \frac{dy}{6} \] ### Step 3: Substitute into the integral Now we substitute \( y \) and \( dt \) into the integral: \[ I = \int \frac{dt}{6t - 1} = \int \frac{\frac{dy}{6}}{y} \] This simplifies to: \[ I = \frac{1}{6} \int \frac{dy}{y} \] ### Step 4: Integrate The integral \( \int \frac{dy}{y} \) is a standard integral, which results in: \[ \int \frac{dy}{y} = \ln |y| + C \] Thus, we have: \[ I = \frac{1}{6} \ln |y| + C \] ### Step 5: Substitute back for \( y \) Now we substitute back \( y = 6t - 1 \): \[ I = \frac{1}{6} \ln |6t - 1| + C \] ### Final Answer Therefore, the final result of the integral is: \[ \int \frac{dt}{6t - 1} = \frac{1}{6} \ln |6t - 1| + C \] ---

To solve the integral \( \int \frac{dt}{6t - 1} \), we can follow these steps: ### Step 1: Identify the integral We start with the integral: \[ I = \int \frac{dt}{6t - 1} \] ...
Promotional Banner

Topper's Solved these Questions

  • DAILY PRACTICE PROBLEMS

    RESONANCE|Exercise DPP NO 7 PHYSICS|4 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE|Exercise DPP 8 PHYSICS|7 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE|Exercise DPP NO. 5 Physics|6 Videos
  • CURRENT ELECTRICITY

    RESONANCE|Exercise Exercise|54 Videos
  • ELASTICITY AND VISCOCITY

    RESONANCE|Exercise Advanced Level Problems|9 Videos

Similar Questions

Explore conceptually related problems

Integrate the following : (i) int(t-(1)/(t))^(2)" dt " (ii) intsin(10t-50)" dt " (iii) inte^((100t+6))" dt "

Integrate the following : int(sin4t+2t)dt

Integrate the following: int(2t-4)^(-4)dt

Integrate the following int(2t-4)^(-4)dt=

Integrate the following : int_(3)^(6)(u+at)dt where u and a are constants.

Integrate the following function (a) int_(o)^(2) 2t dt (b) int _(pi//6)^(pi//3) sin x dx (c) int _(4)^(10)(dx)/(x) (d) int _(o)^(pi) cos x dx (e) int _(1) ^(2)(2t -4) dt

Integrate the Following Integral int (2x-3)/sqrt(2x^2-6x+1) dx

Integrate the following w.r.t.x.: (x^(2).tan^(-1)(x^(3)))/(1+x^(6))

Obtain the following integrals : int6^(t)dt

1/2 int (dt)/(1 + t)