Home
Class 11
PHYSICS
If vec(P)=hat(i)+hat(j)-hat(k) and vec(Q...

If `vec(P)=hat(i)+hat(j)-hat(k)` and `vec(Q)=hat(i)-hat(j)+hat(k)`, then unit vector along `(vec(P)-vec(Q))` is `:`

A

`(1)/(sqrt(2))hat(i)-(1)/(2)hat(k)`

B

`(sqrt(2)hat(j)-sqrt(2)hat(k))/(2)`

C

`(hat(j)-hat(k))/(2sqrt(2))`

D

`(2hat(j)-2hat(k))/(4)`

Text Solution

Verified by Experts

The correct Answer is:
B

`vec(P)-vec(Q)=(hat(i)+hat(j)-hat(k))-(hat(i)-hat(j)+hat(k))=2hat(j)-2hat(k)`
`:. ` unit vector along
`vec(P)-vec(Q)=((vec(P)-vec(Q)))/(|vec(P)-vec(Q)|)=(2hat(j)-2hat(k))/(sqrt((2)^(2)+(-2)^(2)))`
`:. vec(P)-vec(Q)=((vec(P)-vec(Q)))/(|vec(P)-vec(Q)|)=(2hat(j)-2hat(k))/(sqrt((2)^(2)+(-2)^(2)))`
`=(2hat(j)-2hat(k))/(sqrt(4+4))=(2hat(j)-2hat(k))/(2sqrt(2))=(hat(j)-hat(k))/(sqrt(2))`
Promotional Banner

Topper's Solved these Questions

  • DAILY PRACTICE PROBLEMS

    RESONANCE|Exercise Dpp no 10 physics|8 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE|Exercise Dpp no 11 physics|6 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE|Exercise DPP 8 PHYSICS|7 Videos
  • CURRENT ELECTRICITY

    RESONANCE|Exercise Exercise|54 Videos
  • ELASTICITY AND VISCOCITY

    RESONANCE|Exercise Advanced Level Problems|9 Videos

Similar Questions

Explore conceptually related problems

If vec(a)=5hat(i)-hat(j)-3hat(k) and vec(b)=hat(i)+3hat(j)-5hat(k) , then show that the vectors (vec(a)+vec(b)) and (vec(a)-vec(b)) are perpendicular.

If vec(a)=2hat(i)-hat(j)+2hat(k) and vec(b)=6hat(i)+2hat(j)+3hat(k) , find a unit vector parallel to vec(a)+vec(b) .

If vec(a)=4hat(i)-hat(j)+hat(k) and vec(b)=2hat(i)-2hat(j)+hat(k) , then find a unit vector parallel to the vector vec(a)+vec(b) .

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+2hat(j)+2hat(k) , find the magnitude of compinent of (vec(A)+vec(B)) along vec(B)

If vectors vec(a)=hat(i)-2hat(j)+hat(k), vec(b)=-2hat(i)+4hat(j)+5hat(k) and vec(c )=hat(i)-6hat(j)-7hat(k) , then find the value of |vec(a)+vec(b)+vec(c )| .

If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :

Let vec(a) = hat(i) + 2hat(j) + 3hat(k) , vec(b) = 2hat(i) + hat(j) + hat(k), vec(c) = 3hat(i) + 2hat(j) + hat(k) and vec(d) = 3hat(i) - hat(j) - 2hat(k) , then . If vec(a) xx (vec(b) xx vec(c)) = pvec(a) + qvec(b) + rvec(c) , then find value of p,q are r.