Home
Class 12
PHYSICS
If vec(A)=hati +hat j and vec(B)=hati-ha...

If `vec(A)=hati +hat j` and `vec(B)=hati-hatj`
The value of `(vec(A)+vec(B)).(vec(A)-vec(B))` is :

A

`sqrt(2)`

B

0

C

`(1)/(2)`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute the expression \((\vec{A} + \vec{B}) \cdot (\vec{A} - \vec{B})\) given the vectors \(\vec{A} = \hat{i} + \hat{j}\) and \(\vec{B} = \hat{i} - \hat{j}\). ### Step 1: Calculate \(\vec{A} + \vec{B}\) \[ \vec{A} + \vec{B} = (\hat{i} + \hat{j}) + (\hat{i} - \hat{j}) \] Combine like terms: \[ = \hat{i} + \hat{j} + \hat{i} - \hat{j} = 2\hat{i} + 0\hat{j} = 2\hat{i} \] ### Step 2: Calculate \(\vec{A} - \vec{B}\) \[ \vec{A} - \vec{B} = (\hat{i} + \hat{j}) - (\hat{i} - \hat{j}) \] Combine like terms: \[ = \hat{i} + \hat{j} - \hat{i} + \hat{j} = 0\hat{i} + 2\hat{j} = 2\hat{j} \] ### Step 3: Compute the dot product \((\vec{A} + \vec{B}) \cdot (\vec{A} - \vec{B})\) Now we need to calculate: \[ (2\hat{i}) \cdot (2\hat{j}) \] Using the property of dot product: \[ = 2 \cdot 2 \cdot (\hat{i} \cdot \hat{j}) \] Since \(\hat{i} \cdot \hat{j} = 0\) (because they are perpendicular): \[ = 4 \cdot 0 = 0 \] ### Final Answer The value of \((\vec{A} + \vec{B}) \cdot (\vec{A} - \vec{B})\) is **0**. ---

To solve the problem, we need to compute the expression \((\vec{A} + \vec{B}) \cdot (\vec{A} - \vec{B})\) given the vectors \(\vec{A} = \hat{i} + \hat{j}\) and \(\vec{B} = \hat{i} - \hat{j}\). ### Step 1: Calculate \(\vec{A} + \vec{B}\) \[ \vec{A} + \vec{B} = (\hat{i} + \hat{j}) + (\hat{i} - \hat{j}) \] Combine like terms: \[ ...
Promotional Banner

Topper's Solved these Questions

  • DAILY PRACTICE PROBLEM

    RESONANCE|Exercise DPP No.3|20 Videos
  • DAILY PRACTICE PROBLEM

    RESONANCE|Exercise DPP No.4|9 Videos
  • DAILY PRACTICE PROBLEM

    RESONANCE|Exercise DPP.No.71|1 Videos
  • CURRENT ELECTRICITY

    RESONANCE|Exercise High Level Problems (HIP)|21 Videos
  • ELECTRO MAGNETIC WAVES

    RESONANCE|Exercise Exercise 3|27 Videos

Similar Questions

Explore conceptually related problems

If vec(A) = 2hati +3 hatj +hatk and vec(B) = 3hati + 2hatj + 4hatk , then find the value of (vec(A) +vec(B)) xx (vec(A) - vec(B))

vec A=6hati+5hatj and vec B=(4hati-3hatj) then (vec A+vec B).(vec A-vec B)=

If vec(A) = 3 hati +2hatj and vec(B) = hati - 2hatj +3hatk , find the magnitudes of vec(A) +vec(B) and vec(A) - vec(B) .

If vec A=3hat i-4hat j and vec B=-hat i-4hat j, caculate the direction of vec A+vec B

If vec(a) = hati - 2hatj - 3hatk, vec(b) = 2 hati - hatj - hatk and vec(c) = hati +3 hatj - 2hatk find (vec(a) xx vec(b)) xx vec(c)

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

If vec(a) = hati - 2hatj - 3hatk, vec(b) = 2hati +hatj - hatk and vec(c) = hati +3hatj - 2hatk then find vec(a) xx (vec(b) xx vec(c)) .

If vec(a)=4hat(i)+hat(j)-hat(k) , vec(b)=3hat(i)-2hat(j)+2hat(k) , then the value of |vec(a)-vec(b)-vec(c)| is :-

If vec(a)=(hat(i)+2hat(j)-3hat(k)) and vec(b)=(3hat(i)-hat(j)+2hat(k)) then the angle between (vec(a)+vec(b)) and (vec(a)-vec(b)) is

(i) If vec(a)=hat(i)+2hat(j)-3hat(k) and vec(b)=3hat(i)-hat(j)+2hat(k) , show that (vec(a)+vec(b)) is perpendicular to (vec(A)-vec(b)) . (ii) If vec(a)=(5hat(i)-hat(j)-3 hat(k)) and vec(b)=(hat(i)+3hat(j)-5hat(k)) then show that (vec(a)+vec(b)) and (vec(a)-vec(b)) are orthogonal.