Home
Class 11
PHYSICS
If vecF=hati+2hatj-3hatk and vecr=2hati-...

If `vecF=hati+2hatj-3hatk` and `vecr=2hati-hatj+hatk` find `vecrxxvecF`

Text Solution

Verified by Experts

`vecrxxvecF=|:(i,j,k),(2,-1,1),(1,2,-3):|`
`(3-2)hati-(-6-1)hati+(4+1)hatk=hati+7hatj+shatk`
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If vecF=2hati+3hatj-hatk and vecr=hati-hatj+6hatk find vecrxxvecF

Find the angle between the line vecr = (hati +2hatj -hatk ) +lambda (hati - hatj +hatk) and vecr cdot (2hati - hatj +hatk) = 4.

If vecomega=2hati-3hatj+4hatk and vecr=2hati-3hatj+2hatk then the linear velocity is

Find the acute angle between the following planes: i) vecr.(hati+hatj-2hatk)=5 and vecr.(2hati+2hatj-hatk)=9 ii) vecr.(hati+2hatj-hatk)=6 and vecr.(2hati-hatj-hatk)+3=0

If vecrxxveca=vecrxxvecb , veca=2hati-3hatj+4hatk, vecb=7hati+hatj-6hatk,vecc=hati+2hatj+hatk , and vecr*vecc=-3 then find vecr*veca

Given that vecu = hati + 2hatj + 3hatk , vecv = 2hati + hatk + 4hatk , vecw = hati + 3hatj + 3hatk and (vecu.vecR - 15) hati + (vecc. vecR - 30) hatj + (vecw . vec- 20) veck = vec0 . Then find the greatest integer less than or equal to |vecR| .

The torpue of force vecF=-2hati+2hatj+3hatk acting on a point vecr=hati-2hatj+hatk about origin will be :

Show that the line of intersection of the planes vecr*(hati+2hatj+3hatk)=0 and vecr*(3hati+2hatj+hatk)=0 is equally inclined to hati and hatk . Also find the angleit makes with hatj .

If vecr=(hati+2hatj+3hatk)+lamda(hati-hatj+hatk) and vecr=(hati+2hatj+3hatk)+mu(hati+hatj-hatk) are two lines, then find the equation of acute angle bisector of two lines.

Find the shortest distance between the lines vecr = 3 hati + 2hatj - 4 hatk + lamda ( hati +2 hatj +2 hatk ) and vecr = 5 hati - 2hatj + mu ( 3hati + 2hatj + 6 hatk) If the lines intersect find their point of intersection