Home
Class 11
PHYSICS
If the angle between veca and vecb is ...

If the angle between `veca` and `vecb` is `(pi)/(3)`, then angle between `2veca` and `-3vecb` is :

A

`(.)/(3)`

B

`(2.)/(3)`

C

`(.)/(6)`

D

`(5.)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If veca, vecb and vecc are three vectors, such that |veca|=2, |vecb|=3, |vecc|=4, veca. vecc=0, veca. vecb=0 and the angle between vecb and vecc is (pi)/(3) , then the value of |veca xx (2vecb - 3 vecc)| is equal to

Let veca,vecb,vecc be three vectors such that |veca|=|vecb|=|vecc|=4 and angle between veca and vecb is pi/3 angle between vecb and vecc is pi/3 and angle between vecc and veca is pi/3 . The heighat of the parallelopiped whose adjacent edges are represented by the ectors veca,vecb and vecc is (A) 4sqrt(2/3) (B) 3sqrt(2/3) (C) 4sqrt(3/2) (D) 3sqrt(3/2)

Let veca,vecb,vecc be three vectors such that |veca|=|vecb|=|vecc|=4 and angle between veca and vecb is pi/3 angle between vecb and vecc is pi/3 and angle between vecc and veca is pi/3 . The volume of the tetrhedron whose adjacent edges are represented by the vectors veca,vecb and vecc is (A) (4sqrt(3))/2 (B) (8sqrt(2))/3 (C) 16/sqrt(3) (D) (16sqrt(2))/3

Let veca,vecb,vecc be three vectors such that |veca|=|vecb|=|vecc|=4 and angle between veca and vecb is pi/3 angle between vecb and vecc is pi/3 and angle between vecc and veca is pi/3 . The volume of the triangular prism whose adjacent edges are represented by the vectors veca,vecb and vecc is (A) 12sqrt(12) (B) 12sqrt(3) (C) 16sqrt(2) (D) 16sqrt(3)

Let veca,vecb,vecc be three vectors such that |veca|=|vecb|=|vecc|=4 and angle between veca and vecb is pi/3 angle between vecb and vecc is pi/3 and angle between vecc and veca is pi/3 . The volume of the pasrallelopiped whose adjacent edges are represented by the vectors veca, vecb and vecc is (A) 24sqrt(2) (B) 24sqrt(3) (C) 32sqrt92) (D) 32sqrt()

The angle between vector (vecA) and (vecA-vecB) is :

The vector veca+vecb bisects the angle between the vectors hata and hatb if (A) |veca|+|vecb|=0 (B) angle between veca and vecb is zero (C) |veca|=|vecb|=0 (D) none of these

If |veca|=3, |vecb|=4 and the angle between veca and vecb is 120^(@) . Then find the value of |4 veca + 3vecb|

If |veca|=3, |vecb|=4 and the angle between veca and vecb is 120^(@) . Then find the value of |4 veca + 3vecb|