Home
Class 11
PHYSICS
If veca=mvecb+vecc. The scalar m is...

If `veca=mvecb+vecc`. The scalar m is

A

`(veca.vecb-vecb.vecc)/(b^(2))`

B

`(vecc.vecb-veca.vecc)/(a^(2))`

C

`(vecc.veca-vecb.vecc)/(c^(2))`

D

`(veca.vecb-vecb.vecc)/(a^(2))`

Text Solution

Verified by Experts

The correct Answer is:
A

`mvecb.vecb=(veca-vecc).vecb`
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are non coplanar vectors and vecp, vecq, vecr are reciprocal vectors, then (lveca+mvecb+nvecc).(lvecp+mvecq+nvecr) is equal to

If veca,vecb, vecc are three vectors such that veca + vecb +vecc =vec0, |veca| =1 |vecb| =2, | vecc| =3 , then veca.vecb + vecb .vecc +vecc + vecc.veca is equal to

If veca, vecb, vecc are vectors such that |vecb|=|vecc| then {(veca+vecb)xx(veca+vecc)}xx(vecbxxvecc).(vecb+vecc)=

If veca, vecb, vecc are non-coplanar vectors, then (veca.(vecb xx vecc))/(vecb.(vecc xx veca)) + (vecb.(vecc xx veca))/(vecc.(veca xx vecb)) +(vecc.(vecb xx veca))/(veca. (vecb xx vecc)) is equal to:

If veca,vecb,vecc are coplanar vectors , then show that |{:(veca,vecb,vecc),(veca*veca,veca*vecb,veca*vecc),(vecb*veca,vecb*vecb,vecb*vecc):}|=vec0

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If [veca xx vecb vecb xx vecc vecc xx veca]=lambda[veca vecb vecc^(2)] , then lambda is equal to

veca.(vecbxxvecc) is called the scalar triple product of veca,vecb,vecc and is denoted by [veca vecb vecc]. If veca, vecb, vecc are cyclically permuted the vaslue of the scalar triple product remasin the same. In a scalar triple product, interchange of two vectors changes the sign of scalar triple product but not the magnitude. in scalar triple product the the position of the dot and cross can be interchanged privided the cyclic order of vectors is preserved. Also the scaslar triple product is ZERO if any two vectors are equal or parallel. [veca+vecb vecb+vecc vecc+veca] is equal to (A) 2[veca vecb vecc] (B) 3[veca,vecb,vecc] (C) [veca,vecb,vecc] (D) 0

Let veca,vecb and vecc be three vectors. Then scalar triple product [veca vecb vecc] is equal to