Home
Class 11
MATHS
Evaluate the following: sin(7pi)/(12)cos...

Evaluate the following: `sin(7pi)/(12)cospi/4-cos(7pi)/(12)sinpi/4`

Text Solution

AI Generated Solution

To evaluate the expression \( \sin\left(\frac{7\pi}{12}\right) \cos\left(\frac{\pi}{4}\right) - \cos\left(\frac{7\pi}{12}\right) \sin\left(\frac{\pi}{4}\right) \), we can use the sine of a difference formula: \[ \sin(a - b) = \sin(a) \cos(b) - \cos(a) \sin(b) \] ### Step 1: Identify \(a\) and \(b\) In our case, we can identify: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    RD SHARMA|Exercise Solved Examples And Exercises|167 Videos
  • TRIGONOMETRIC RATIOS OF MULTIPLE AND SUBMULTIPLE ANGLES

    RD SHARMA|Exercise Solved Examples And Exercises|193 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following: (cos(2 pi))/(3)(cos pi)/(4)-(sin(2 pi))/(3)(sin pi)/(4)

Evaluate the following expression : sin^(2).(pi)/(12)+sin^(2).(3pi)/(12)+sin^(2).(5pi)/(12).

Knowledge Check

  • cos.(2pi)/(7)+cos.(4pi)/(7)+cos.(6pi)/(7)

    A
    is equal to zero
    B
    lies between 0 and 3
    C
    is a negative number
    D
    lies between 3 and 6
  • Similar Questions

    Explore conceptually related problems

    Evaluate the following: i) sin\ pi/12 ii) sin\ pi/8 , iii) cos\ pi/8 , iv) cos\ pi/(24

    Evaluate each of the following sec^(-1) (sec ""(7pi)/(4))

    Prove that (i) "sin " (7pi)/(12) " cos " (pi)/(2) - "cos " *(7pi)/(12) " sin " (pi)/(4) = (sqrt(3))/(2) (ii) " sin " (pi)/(4) " cos " (pi)/(2) + "cos"(pi)/(4) " sin " (pi)/(12) = (sqrt(3))/(2) (iii) " cos " (2pi)/(3) " cos " (pi)/(4) - " sin " (2pi)/(3) " sin " (pi)/(4) =(-(sqrt(3) +1))/(2sqrt(2))

    (sin((5pi)/12)-cos((5pi)/12))/(cos((5pi)/12)+sin((5pi)/12))=

    Using application of trignometric formulas prove that (i)cos(pi/4+x)+cos(pi/4-x)=sqrt2cos x(i1)sin(7pi/12)cos(pi/4)-cos(7pi/12)sin(pi/4)

    Prove that: sin((4 pi)/(9)+7)cos((pi)/(9)+7)-cos((4 pi)/(9)+7)sin((pi)/(9)+7)=(sqrt(3))/(2)

    Value of sin((7 pi)/(12))+cos((7 pi)/(12)) is equal to