Home
Class 11
MATHS
Prove that (tan^2 (2theta)-tan^2 theta)/...

Prove that `(tan^2 (2theta)-tan^2 theta)/(1-tan^2 (2theta) tan^2 theta)=tan (3theta)tan theta`

Text Solution

AI Generated Solution

To prove the identity \[ \frac{\tan^2(2\theta) - \tan^2(\theta)}{1 - \tan^2(2\theta) \tan^2(\theta)} = \tan(3\theta) \tan(\theta), \] we will use trigonometric identities and properties of tangent. ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    RD SHARMA|Exercise Solved Examples And Exercises|167 Videos
  • TRIGONOMETRIC RATIOS OF MULTIPLE AND SUBMULTIPLE ANGLES

    RD SHARMA|Exercise Solved Examples And Exercises|193 Videos

Similar Questions

Explore conceptually related problems

Prove that (tan^(2)2theta-tan^(2)theta)/(1-tan^(2)2thetatan^(2)theta)=tan 3 theta tan theta .

tan2 theta tan theta=1

(tan^(2)(2 theta)-tan^(2)theta)/(1-tan^(2)(2 theta)tan^(2)theta) is equal to-

tan theta+tan2 theta+tan theta.tan2 theta=1

( tan^(2) 2 theta - tan^(2) theta )/( 1- tan^(2) 2 theta tan^(2) theta ) =

Prove that ((1+tan^(2)theta)sin^(2)theta)/(tan theta)=tan theta

tan2 theta xx tan theta=1

Prove that: tan4 theta=(4tan theta(1-tan^(2)theta))/(1-tan^(2)theta+tan^(4)theta)

tantheta+tan2theta=tan3theta

If tan2 theta*tan theta=1, then theta=