Home
Class 12
MATHS
For the matrix A=[[3,2],[1,1]], find the...

For the matrix A=`[[3,2],[1,1]]`, find the numbers a and b such that `A^2+aA+bI=O`.

Text Solution

AI Generated Solution

To solve the problem, we need to find the values of \( a \) and \( b \) such that \( A^2 + aA + bI = O \), where \( A = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} \) and \( I \) is the identity matrix. ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.1|8 Videos
  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.6|15 Videos
  • DETERMINANTS

    NCERT|Exercise Exercise 4.2|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT|Exercise QUESTION|3 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos

Similar Questions

Explore conceptually related problems

For the matrix A=[[3,21,1]], find the numbers a and b such that A^(2)+aA+bI=0

For the matrix A=[3211], find the numbers a and b such that A^(2)+aA+bI=O. Hence find A^(-1) .

For the matrix A=[{:(2,1),(3,0):}] , find the numbers 'a' and 'b' such that A^(2)+aA+bI=O . Hence , find A^(-1) .

For the matrix A=[{:(,3,2),(,1,1):}] Find a & b so that A^(2)+aA+bI=0 . Hence find A^(-1)

If matrix A=[[1,2,3]], write AA^(T)

If A=[[1,32,1]], find the determinant of the matrix A^(2)-2A

If A=[[1,32,1]], find the determinant of the matrix A^(2)-2A

if A=[[3,-1-1,2]],B=[[31]],C=[[1-2]] find the matrix X such that AX=3B+2C.

Let matrix A=[[3,2],[1,1]] satisfies the equation A^2+aA+bI=0 then the value of |a+b| =

NCERT-DETERMINANTS-EXERCISE 4.5
  1. For the matrix A=[(1, 1, 1),( 1, 2,-3),( 2, 1, 3)]. Show that A^3-6A^2...

    Text Solution

    |

  2. For the matrix A=[[3,2],[1,1]], find the numbers a and b such that A^2...

    Text Solution

    |

  3. If A is an invertible matrix of order 2, then det (A^(-1))is equal to...

    Text Solution

    |

  4. Find the inverse the matrix (if it exists)given in[(1, 0, 0),( 0,cosal...

    Text Solution

    |

  5. Let A=[(3, 7),( 2, 5)]and B=[(6, 8),( 7, 9)]. Verify that (A B)^(-1)=B...

    Text Solution

    |

  6. Let A be a non-singular square matrix of order 3 xx3. Then |adj A| is ...

    Text Solution

    |

  7. If A=[[2,-1, 1],[-1 ,2,-1],[ 1, -1, 2]].Verify that A^3-6A^2+9A-4I=0an...

    Text Solution

    |

  8. Find the inverse the matrix (if it exists)given in[[1, 0, 0],[ 3, 3, 0...

    Text Solution

    |

  9. Find the inverse the matrix (if it exists) given in[(2, 1, 3),( 4,-1, ...

    Text Solution

    |

  10. Find adjoint of the matrice in[(1,-1, 2),( 2, 3, 5),(-2, 0, 1)]

    Text Solution

    |

  11. Verify A (a d j A) = (a d j A) A = |A|I " " " " " where A=[(2 ,3),(-4...

    Text Solution

    |

  12. Find adjoint of the matrice in[(1, 2),( 3, 4)]

    Text Solution

    |

  13. Find the inverse the matrix (if it exists)given in[(-1, 5),(-3, 2)]

    Text Solution

    |

  14. Find the inverse the matrix (if it exists)given in[(1, 2, 3),( 0, 2, 4...

    Text Solution

    |

  15. Verify A (a d j A) = (a d j A) A = |A|I [(1,-1,2),(3,0,-2),(1,0,3)]

    Text Solution

    |

  16. Find the inverse the matrix (if it exists)given in[(2,-2),( 4, 3)]

    Text Solution

    |

  17. Find the inverse the matrix (if it exists)given in[(1,-1, 2),( 0, 2,-3...

    Text Solution

    |

  18. If A=[(3, 1),( 1, 2)], show that A^2-5A+5I=0. Hence, find A^(-1).

    Text Solution

    |