Home
Class 12
MATHS
If the function f(x) defined by f(x)={(l...

If the function `f(x)` defined by `f(x)={(log(1+a x)-log(1-b x))/x ,\ \ \ if\ x!=0\ \ \ \ \ \ \ \ \ \ \ \ k ,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ if\ x=0` is continuous at `x=0` , find `k` .

Text Solution

Verified by Experts

`f(0)=lim _{x rightarrow 0} f(x)`

`=lim _{x rightarrow 0} frac{log (1+a x)-log (1-b x)}{x}`

`=lim _{x rightarrow 0} frac{a log (1+a x)}{a x}+frac{b log (1-b x)}{-b x}`

`=a cdot 1+b cdot 1` using, `.lim _{x rightarrow 0} frac{log (1+x)}{x}=1`

`=a । b`

`f(0)=(a+b)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL DISTRIBUTION

    RD SHARMA|Exercise Solved Examples And Exercises|141 Videos
  • DEFINITE INTEGRALS

    RD SHARMA|Exercise Solved Examples And Exercises|567 Videos

Similar Questions

Explore conceptually related problems

If the function f(x) defined by f(x)=(log(1+3x)-log(1-2x))/(x),x!=0 and k

If the function f(x) defined by f(x)={(log(1+3x)-log(1-2x))/x\ \ \ ,\ \ \ x!=0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \k\ \ \ \ \ \ \ ,\ \ \ \ \ \ \ x=0 is continuous at x=0 , then k= (a) 1 (b) 5 (c) -1 (d) none of these

If f(x)={(log(1+a x)-log(1-b x))/x\ \ \ ,\ \ \ x!=0,\ \ \ \ \ \ \k\ \ \ \ \ \ \ \ \ \ \ \ \ \ ,\ \ \ \ \ \ \ \ \ \ \ x=0 and f(x) is continuous at x=0 , then the value of k is a-b (b) a+b (c) loga+logb (d) none of these

if the function f(x) defined by f(x)=(log(1+ax)-log(1-bx))/(x), if x!=0 and k if x=0 is continuous at x=0, find k

If f(x)={(1-cosx)/(x^2)\ \ \ ,\ \ \ x!=0k\ \ \ ,\ \ \ x=0 is continuous at x=0 , find kdot

Let f be a function defined by f(x) = 2x^(2) - log |x|, x ne 0 then

IF the function f(x) defined by f(x) = x sin ""(1)/(x) for x ne 0 =K for x =0 is continuous at x=0 , then k=

In (0, infty) then function f(x)=(log (1+x))/(x) is

If the f(x) =(log(1+ax)-log(1-bx))/x , xne0 is continuous at x = 0 then, f(0) = .....

If the function defined by f(x) = {((sin3x)/(2x),; x!=0), (k+1,;x=0):} is continuous at x = 0, then k is

RD SHARMA-CONTINUITY-Solved Examples And Exercises
  1. Find the value of the constant k so that the function given belo...

    Text Solution

    |

  2. Find the value of ' a ' if the function f(x) defined by f(x)={2x-1,\ \...

    Text Solution

    |

  3. If the function f(x) defined by f(x)={(log(1+a x)-log(1-b x))/x ,\ \ \...

    Text Solution

    |

  4. Find the values of ' a ' so that the function f(x) defined by f(x)={(s...

    Text Solution

    |

  5. If the function f(x) given by f(x)={3a x+b ,\ \ \ if\ x >1\ \ \ \ \ 11...

    Text Solution

    |

  6. Let f(x)={(1-cos4x)/(x^2),\ \ \ if\ x<0a ,\ \ \ if\ x=0(sqrt(x))/(sqrt...

    Text Solution

    |

  7. Determine f(0) so that the function f(x) defined by f(x)=((4^x-1)^3)/...

    Text Solution

    |

  8. If f(x)=(sqrt(2)cosx-1)/(cotx-1) , x!=pi/4 . Find the value of f(pi/4)...

    Text Solution

    |

  9. Prove that the greatest integer function [x] is continuous at all ...

    Text Solution

    |

  10. Leg f(x+y)=f(x)+f(y)fora l lx , y in R , If f(x)i scon t inuou sa tx=...

    Text Solution

    |

  11. Show that thefunction f (x) = | sin x + cos x | is continuous at x =pi

    Text Solution

    |

  12. Test the continuity of the following function at the origin: f(x)={...

    Text Solution

    |

  13. A function f(x) is defined as f(x)={(x^2-x-6)/(x-3);\ \ \ if\ x!=3\ \ ...

    Text Solution

    |

  14. A function f(x) is defined as f(x)={(x^2-9)/(x-3);\ \ \ if\ x!=3\ \ \ ...

    Text Solution

    |

  15. If f(x)={(x^2-1)/(x-1);\ \ \ for\ x!=1\ \ \ 2;\ \ \ \ for\ x=1 . Find ...

    Text Solution

    |

  16. If f(x)={(sin3x)/x ,\ \ \ w h e n\ x!=0 1,\ \ \ w h e n\ x=0 . Find wh...

    Text Solution

    |

  17. If f(x)={e^(1//x),\ \ \ if\ x!=0 1,\ \ \ if\ x=0 . Find whether f is c...

    Text Solution

    |

  18. Let f(x)={(1-cosx)/(x^2),\ \ \ w h e n\ x!=0 1,\ \ \ \ w h e n\ x=0 . ...

    Text Solution

    |

  19. Show that f(x)={(x-|x|)/2,\ \ \ w h e n\ x!=0 2,\ \ \ w h e n\ x=0 is ...

    Text Solution

    |

  20. Show that f(x)={(|x-a|)/(x-a),\ \ \ w h e n\ x!=a1,\ \ \ w h e n\ x=a ...

    Text Solution

    |