Home
Class 12
MATHS
What happens to a function f(x) at x=...

What happens to a function `f(x)` at `x=a` , if `(lim)_(x->a)f(x)=f(a)`

Text Solution

Verified by Experts

if `f(x)` is a function defined in its domain such that

`lim _{x -> a} f(x)=f(a)`,

then `f(x)` becomes continuous at `x=a`.

Promotional Banner

Topper's Solved these Questions

  • BINOMIAL DISTRIBUTION

    RD SHARMA|Exercise Solved Examples And Exercises|141 Videos
  • DEFINITE INTEGRALS

    RD SHARMA|Exercise Solved Examples And Exercises|567 Videos

Similar Questions

Explore conceptually related problems

For the function f(x) = 2 . Find lim_(x to 1) f(x)

For the function f(x) = 4x . Find lim_(x to 2) f (x)

Consider the function f(x) =x^2 + x . Find the lim_(xrarr1) f(x)

Limit of a function f(x) is said to exist at,x rarr a when lim_(x rarr a)f(x)=lim_(x rarr a)f(x)= Finite quantity.

If a differentiable function f(x) satisfies lim_(x to -1) (f(x) +1)/(x^(2)-1)=(3)/(2) Then what is lim_(x to -1) f(x) equal to ?

Left hand derivative and right hand derivative of a function f(x) at a point x=a are defined as f'(a^-)=lim_(h to 0^(+))(f(a)-f(a-h))/(h) =lim_(hto0^(+))(f(a+h)-f(a))/(h) andf'(a^(+))=lim_(h to 0^+)(f(a+h)-f(a))/(h) =lim_(hto0^(+))(f(a)-f(a+h))/(h) =lim_(hto0^(+))(f(a)-f(x))/(a-x) respectively. Let f be a twice differentiable function. We also know that derivative of a even function is odd function and derivative of an odd function is even function. The statement lim_(hto0)(f(-x)-f(-x-h))/(h)=lim_(hto0)(f(x)-f(x-h))/(-h) implies that for all x"inR ,

F(x) is the function such that (lim)_(x->0)(f(x))/x=1\ a n d\ (lim)_(x->0)(x(1+acosx))/((f(x))^3)=1 , then find the value of a

Let f(x) be twice differentiable function such that f'(0) =2 , then, lim_(xrarr0) (2f(x)-3f(2x)+f(4x))/(x^2) , is

f(x) is differentiable function at x=a such that f'(a)=2 , f(a)=4. Find lim_(xrarra) (xf(a)-af(x))/(x-a)

RD SHARMA-CONTINUITY-Solved Examples And Exercises
  1. Find all point of discontinuity of the function f(t)=1/(t^2+t-2), wher...

    Text Solution

    |

  2. Define continuity of a function at a point.

    Text Solution

    |

  3. What happens to a function f(x) at x=a , if (lim)(x->a)f(x)=f(a)

    Text Solution

    |

  4. Find f(0) , so that f(x)=x/(1-sqrt(1-x)) becomes continuous at x=0 .

    Text Solution

    |

  5. The function f(x)={((sin3x)/x ,x!=0),(k/2,x=0):} is continuous of x...

    Text Solution

    |

  6. If the function f(x)=(sin10 x)/x , x!=0 is continuous at x=0 , find f(...

    Text Solution

    |

  7. If f(x)={(x^2-16)/(x-4)\ \ \ ,\ \ \ if\ x!=4k\ \ \ ,\ \ \ if\ x=4 is c...

    Text Solution

    |

  8. Determine whether f(x)={(sinx^2)/x\ \ \ ,\ \ \ x!=0 0\ \ \ ,\ \ \ x=0 ...

    Text Solution

    |

  9. If f(x)={(1-cosx)/(x^2)\ \ \ ,\ \ \ x!=0k\ \ \ ,\ \ \ x=0 is continuou...

    Text Solution

    |

  10. If f(x)={(sin^(-1)x)/x\ \ \ ,\ \ \ x!=0k\ \ \ ,\ \ \ x=0 is continuous...

    Text Solution

    |

  11. The function f(x)=(4-x^2)/(4x-x^3) discontinuous at only one point di...

    Text Solution

    |

  12. If f(x)=|(log)(10)x|,t h e na tx=1 f(x) is continuous and f^(prime)(1...

    Text Solution

    |

  13. If f(x)={(36^x-9^x-4^x+1)/(sqrt(2)-sqrt(1+cosx)),x!=0k ,x=0 is continu...

    Text Solution

    |

  14. If f(x) defined by f(x)={(|x^2-x|)/(x^2-|x|),x!=0,1-1. Then (A)f...

    Text Solution

    |

  15. If f(x)={1/((pi-2x)^2)dot(logsinx)/((log(1+pi^2-4pix+4x^2)),x!=pi/2k ...

    Text Solution

    |

  16. If f(x)=(x+1)^(cotx) be continuous at x=0, the f(0) is equal to 0 (b)...

    Text Solution

    |

  17. If f(x)={(log(1+a x)-log(1-b x))/x\ \ \ ,\ \ \ x!=0,\ \ \ \ \ \ \k\ \ ...

    Text Solution

    |

  18. The function f(x)={(e^(1/x)-1)/(e^(1/x)+1),x!=0 0,x=0 is continuous a...

    Text Solution

    |

  19. Let f(x)={(x-4)/(|x-4|)+a ,x<4a+b ,(x-4)/(|x-4|)+b ,x >4 Then f(x) is...

    Text Solution

    |

  20. If the function f(x)={(cosx)^(1/x),x!=0k ,x=0 is continuous at x=0 , t...

    Text Solution

    |