लिखित उत्तर
Verified by Experts
The correct Answer is:
RAJEEV BANSAL-अनिश्चित समाकलन -अभ्यास 1.8
- int cot^(-1)xdx
Text Solution
|
- int e^(x) (cot x+log sin x)dx
Text Solution
|
- int e^(x)(cot x-"cosec"^(2)x)dx
Text Solution
|
- int e^(x)(tan x-log cos x)dx
Text Solution
|
- int e^(x) (tan^(-1) x+1/(1+x^(2)))dx
Text Solution
|
- int e^(x) ((1+sin xcos x)/(cos^(2)x))dx
Text Solution
|
- int e^(x) ((1+x log x)/(x))dx
Text Solution
|
- int e^(x) ((cos x+sin x)/(cos^(2)x))dx
Text Solution
|
- int (tan x sec^(2)x)/((1-tan^(2)x))dx
Text Solution
|
- int underset(II)(x) underset(I)(tan^(-1)) xdx
Text Solution
|
- int underset(I)((sin^(-1)x)^(2)) underset(II)(.1dx)
Text Solution
|
- int (xcos^(-1)x)/(sqrt(1-x^(2)))dx
Text Solution
|
- int underset(II)(x) underset(I)((log x))^(2)dx
Text Solution
|
- int underset(II)((x^(2)+1)) underset(I)(log x)dx
Text Solution
|
- int x^(2) sin^(2) xdx
Text Solution
|
- int x cos^(3) xdx
Text Solution
|
- int (log x)/(x^(n))dx
Text Solution
|
- int x sin^(3) xdx
Text Solution
|
- int x^(3) cos x^(2)dx
Text Solution
|
- int x sin^(3)x cos xdx
Text Solution
|