Home
Class 12
MATHS
If F(alpha)=[(cosalpha, -sinalpha,0),(si...

If `F(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] and G(beta)=[(cosbeta, 0, sinbeta),(0, 1, 0),(-sinbeta, 0, cosbeta)], then [F(alpha)G(beta)]^-1` is equal to (A) `F(-alpha)G(-beta)` (B) `G(-beta)F(-alpha0` (C) `F(alpha^-1)G(beta^-1)` (D) `G(beta^-1)F(alpha^-1)`

A

`(A(alpha))^(-1)=A(-alpha)`

B

`A(alpha)A(beta)=A(alpha+beta)`

C

`B(alpha)B(beta)=B(alpha+beta)`

D

`(B(beta))^(-1)=B(-beta)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D

`A(alpha).A(-alpha)=[{:(cosalpha,sinalpha,0),(sinalpha,cosalpha,0),(0,0,1):}][{:(cosalpha,sinalpha,0),(-sinalpha,cosalpha,0),(0,0,1):}]`
`=[{:(1,0,0),(0,1,0),(0,0,1):}]=I`
Also `|A(alpha)|ne0`
`because(A(alpha))^(-1)=A(-alpha)`
`B(beta)B(-beta)=[{:(cosbeta,0,sinbeta),(0,1,0),(-sinbeta,0,cosbeta):}][{:(cosbeta,0,-sinbeta),(0,1,0),(sinbeta,0,cosbeta):}]`
`=[{:(1,0,0),(0,1,0),(0,0,1):}]=I`
And `|B(beta)|ne0`
`implies(B(beta))^(-1)` exist
`(B(beta))^(-1)=B(beta)`
`A(alpha)A(beta)=[{:(cosalpha,-sinalpha,0),(sinalpha,cosalpha,0),(0,0,1):}][{:(cosbeta,-sinbeta,0),(sinbeta,cosbeta,0),(0,0,1):}]`
`=[{:(cos(alpha+beta),-sin(alpha+beta),0),(sin(alpha+beta),cos(alpha+beta),0),(0,0,1):}]=A(alpha+beta)`

`B(alpha)B(beta)=[{:(cosalpha,0,sinalpha),(0,1,0),(-sinalpha,0,cosalpha)][{:(cosbeta,0,sinbeta),(0,1,0),(-sinbeta,0,cosbeta):}]`
`=[{:(cos(alpha+beta),0,sin(alpha+beta)),(0,1,0),(-sin(alhpa+beta),0,cos(alpha+beta)):}]=B(alpha+beta)`
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE|Exercise MATHEMATICS|263 Videos
  • TEST PAPERS

    RESONANCE|Exercise PART - I MATHMATICS|84 Videos
  • TEST PAPER

    RESONANCE|Exercise CHEMISTRY|37 Videos
  • TEST SERIES

    RESONANCE|Exercise MATHEMATICS|131 Videos

Similar Questions

Explore conceptually related problems

Let F(alpha)=[{:(cosalpha,-sinalpha,0),(sinalpha,cosalpha,0),(0,0,1):}] and G(beta)=[{:(cosbeta,0,sinbeta),(0,1,0),(-sinbeta,0,cosbeta):}] . Show that [F(alpha).G(beta)]^(-1)=G(-beta).F(-alpha) .

Let F(alpha)=[cos alpha-sin alpha0sin alpha cos alpha0001] and G(beta)=[cos beta0sin beta010-sin beta0cos beta] Show that [F(alpha)]^(-1)=F(-alpha)(ii)[G(beta)]^(-1)=G(-beta)( iii) [F(alpha)G(beta)]^(-1)=G(-beta)F(-alpha)

If F(alpha)=[[cosalpha, -sinalpha, 0], [sinalpha, cosalpha, 0], [0, 0, 1]] , where alphainR , then (F(alpha))^(-1)=

If A(alpha, beta)=[("cos" alpha,sin alpha,0),(-sin alpha,cos alpha,0),(0,0,e^(beta))] , then A(alpha, beta)^(-1) is equal to

Statement 1: If f(alpha)=[[cosalpha,-sinalpha,0],[sinalpha,cosalpha,0],[ 0, 0, 1]],t h e n [F(alpha)]^(-1)=F(-alpha)dot Statement 2: For matrix G(beta)=[[cosbeta,0,sinbeta],[0, 1, 0],[-sinbeta,0,cosbeta]]dot we have [G(beta)]^(-1)=G(-beta)dot

If cos (alpha+beta)=0 , then sin(alpha-beta) canbe reduced to : (a) cosbeta (b) cos2beta ( c) sinalpha (d) sin2alpha

| alpha alpha1 beta F|=(alpha-P)(beta-alpha)

Prove that: |(sinalpha, cosalpha, 1),(sinbeta, cosbeta, 1),(singamma, cosgamma, 1)|=sin(alpha-beta)+sin(beta-gamma)+sin(gamma-alpha)

RESONANCE-TEST PAPERS-Math
  1. if b(1),b(2),b(3)(b(1)gt0) are three successive terms of a G.P. with c...

    Text Solution

    |

  2. The value of lamda so that the matric A^(-1)lamdaI is singular where A...

    Text Solution

    |

  3. If F(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] ...

    Text Solution

    |

  4. Let f(x)=(sin^(-1)x)/(cos^(-1)x)+(cos^(-1)x)/(tan^(-1)x)+(tan^(-1)x)/(...

    Text Solution

    |

  5. The value of x for which |{:(x,2,2),(3,x,2),(3,3,x):}|+|{:(1-x,2,4),(2...

    Text Solution

    |

  6. Let f(x)=-4.sqrt(e^(1-x))+1+x+(x^(2))/(2)+(x^(3))/(3). If g(x) is inve...

    Text Solution

    |

  7. Find the integral values of a for which the equation x^4-(a^2-5a+6)x^2...

    Text Solution

    |

  8. Find the number of positive integral solution of the equation tan^(-1)...

    Text Solution

    |

  9. if the equation x^(4)-4x^(3)+ax^(2)+bx+1=0 has four positive roots, th...

    Text Solution

    |

  10. The sum of three numbers forming a geometric progression is equal to 5...

    Text Solution

    |

  11. if cos^(-1)((1)/(sqrt(2))(cos((7pi)/(5)-sin((2pi)/(5)))=(ppi)/(q) (whe...

    Text Solution

    |

  12. if a in R and equation (a-2)(x-[x])^(2)+2(x-[x])+a^(2)=0 (where [x] re...

    Text Solution

    |

  13. Let M be a 3xx3 matrix satisfying M[{:(0),(1),(0):}]=[{:(-1),(2),(3):}...

    Text Solution

    |

  14. If f(x)=(a^(x))/(a^(x)+sqrt(a))(agt0),g(n)=sum(r=1)^(2n-1)2f((r)/(2n))...

    Text Solution

    |

  15. If f(2-x)=f(2+x) and f(7-x)=f(7+x) and f(0)=0. If the minimum number o...

    Text Solution

    |

  16. Let T(n)=(1)/((sqrt(n)+sqrt(n+1))(4sqrt(n)+4sqrt(n+1))) and S(n)=sum(r...

    Text Solution

    |

  17. Let F:[3,infty]to[1,infty] be defined by f(x)=pi^(x(x-3), if f^(-1)(x)...

    Text Solution

    |

  18. f: RvecR ,f(x)(3x^2+m x+n)/(x^2+1)dot If the range of this function is...

    Text Solution

    |

  19. if [{:(1,2,a),(0,1,4),(0,0,1):}]=[{:(1,18,2007),(0,1,36),(0,0,1):}] th...

    Text Solution

    |

  20. The number of real solutions of equation x^(log(x)2)+x^(2)=3x is

    Text Solution

    |