Home
Class 12
MATHS
A homogeneous polynomial of the second d...

A homogeneous polynomial of the second degree in `n` variables i.e., the expression
`phi=sum_(i=1)^(n)sum_(j=1)^(n)a_(ij)x_(i)x_(j)` where `a_(ij)=a_(ji)` is called a quadratic form in `n` variables `x_(1),x_(2)`….`x_(n)` if `A=[a_(ij)]_(nxn)` is a symmetric matrix and `x=[{:(x_(1)),(x_(2)),(x_(n)):}]` then
`X^(T)AX=[X_(1)X_(2)X_(3) . . . . .X_(n)][{:(a_(11),a_(12) ....a_(1n)),(a_(21),a_(22)....a_(2n)),(a_(n1),a_(n2)....a_(n n)):}][{:(x_(1)),(x_(2)),(x_(n)):}] =sum_(i=1)^(n)sum_(j=1)^(n)a_(ij)x_(i)x_(j)=phi`
Matrix A is called matrix of quadratic form `phi`.
Q. The quadratic form of matrix `A[{:(0,2,1),(2,3,-5),(1,-5,8):}]` is

A

`3x_(2)^(2)+8x_(3)^(2)+2x_(1)x_(2)+x_(1)x_(3)-5x_(2)x_(3)`

B

`3x_(2)^(2)+8x_(3)^(2)+4x_(1)x_(2)+2x_(1)x_(3)-10x_(3)x_(2)`

C

`x_(1)^(2)+2x_(2)^(2)+x_(3)^(2)+3x_(1)x_(2)-5x_(2)x_(3)+8x_(1)x_(2)`

D

`3x_(1)^(2)+8x_(2)^(2)+4x_(1)x_(2)+2x_(1)x_(3)+10x_(3)x_(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the quadratic form of the given matrix \( A = \begin{bmatrix} 0 & 2 & 1 \\ 2 & 3 & -5 \\ 1 & -5 & 8 \end{bmatrix} \), we will follow these steps: ### Step 1: Define the vector \( x \) We define the vector \( x \) as: \[ x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \] ### Step 2: Compute \( x^T A \) We need to compute the product \( x^T A \). The transpose of \( x \) is: \[ x^T = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \] Now, we multiply \( x^T \) by \( A \): \[ x^T A = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} 0 & 2 & 1 \\ 2 & 3 & -5 \\ 1 & -5 & 8 \end{bmatrix} \] Calculating this product: - The first element: \[ 0 \cdot x_1 + 2 \cdot x_2 + 1 \cdot x_3 = 2x_2 + x_3 \] - The second element: \[ 2 \cdot x_1 + 3 \cdot x_2 - 5 \cdot x_3 = 2x_1 + 3x_2 - 5x_3 \] - The third element: \[ 1 \cdot x_1 - 5 \cdot x_2 + 8 \cdot x_3 = x_1 - 5x_2 + 8x_3 \] Thus, we have: \[ x^T A = \begin{bmatrix} 2x_2 + x_3 \\ 2x_1 + 3x_2 - 5x_3 \\ x_1 - 5x_2 + 8x_3 \end{bmatrix} \] ### Step 3: Compute \( x^T A x \) Now, we need to compute \( x^T A x \): \[ x^T A x = \begin{bmatrix} 2x_2 + x_3 \\ 2x_1 + 3x_2 - 5x_3 \\ x_1 - 5x_2 + 8x_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \] Calculating this product: - The first term: \[ (2x_2 + x_3) x_1 = 2x_1 x_2 + x_1 x_3 \] - The second term: \[ (2x_1 + 3x_2 - 5x_3) x_2 = 2x_1 x_2 + 3x_2^2 - 5x_2 x_3 \] - The third term: \[ (x_1 - 5x_2 + 8x_3) x_3 = x_1 x_3 - 5x_2 x_3 + 8x_3^2 \] Combining all these terms, we get: \[ x^T A x = (2x_1 x_2 + x_1 x_3) + (2x_1 x_2 + 3x_2^2 - 5x_2 x_3) + (x_1 x_3 - 5x_2 x_3 + 8x_3^2) \] ### Step 4: Simplify the expression Combining like terms: - Coefficient of \( x_1^2 \): 0 - Coefficient of \( x_2^2 \): \( 3x_2^2 \) - Coefficient of \( x_3^2 \): \( 8x_3^2 \) - Coefficient of \( x_1 x_2 \): \( 4x_1 x_2 \) - Coefficient of \( x_1 x_3 \): \( 2x_1 x_3 \) - Coefficient of \( x_2 x_3 \): \( -10x_2 x_3 \) Thus, the quadratic form is: \[ x^T A x = 3x_2^2 + 8x_3^2 + 4x_1 x_2 + 2x_1 x_3 - 10x_2 x_3 \] ### Final Answer The quadratic form of the matrix \( A \) is: \[ 3x_2^2 + 8x_3^2 + 4x_1 x_2 + 2x_1 x_3 - 10x_2 x_3 \]

To find the quadratic form of the given matrix \( A = \begin{bmatrix} 0 & 2 & 1 \\ 2 & 3 & -5 \\ 1 & -5 & 8 \end{bmatrix} \), we will follow these steps: ### Step 1: Define the vector \( x \) We define the vector \( x \) as: \[ x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE|Exercise MATHEMATICS|263 Videos
  • TEST PAPERS

    RESONANCE|Exercise PART - I MATHMATICS|84 Videos
  • TEST PAPER

    RESONANCE|Exercise CHEMISTRY|37 Videos
  • TEST SERIES

    RESONANCE|Exercise MATHEMATICS|131 Videos

Similar Questions

Explore conceptually related problems

1+(x)/(a_(1))+(x(x+a_(1)))/(a_(1)a_(2))+.........+(x(x+a_(1))(x+a_(2))(x+a_(n-1)))/(a_(1)a_(2)a_(n))

Let (1+x^(2))^(2)*(1+x)^(n)=sum_(k=0)^(n+4)a_(k)*x^(k) If a_(1),a_(2) and a_(3) are iun AP, find n.

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+...+a_(2n)x^(2n), then a_(0)+a_(2)+a_(4)+....+a_(2n) is

If (1+x)^(n) = a_(0) + a_(1)x + a_(2)x^(2) + ....+a_(n)x^(n) , then (1+(a_(1))/(a_(0)))(1+(a_(2))/(a_(1)))(1+(a_(3))/(a_(2)))...(1+(a_(n))/(a_(n-1)))=

If (1-x)^(-n)=a_(0)+a_(1)x+a_(2)x^(2)+a_(3)x^(3)+... find the value of,a_(0)+a_(1)+a_(2)+......+a_(n)

If a_(i)>0(i=1,2,3...n), prove that sum_(1<=i

If A_(i)=(x-a_(i))/(|x-a_(i)|),i=1,2,3,....n and a_(1)

RESONANCE-TEST PAPERS-Math
  1. Suppose a series of n terms given by S(n)=t(1)+t(2)+t(3)+. . . .+t(n) ...

    Text Solution

    |

  2. Suppose a series of n terms given by S(n)=t(1)+t(2)+t(3)+. . ..+t(n) ...

    Text Solution

    |

  3. A homogeneous polynomial of the second degree in n variables i.e., the...

    Text Solution

    |

  4. A homogeneous polynomial of the second degree in n variables i.e., the...

    Text Solution

    |

  5. Cosider f(x)=1-e^((1)/(x)-1) Q. If D is the set of all real x such t...

    Text Solution

    |

  6. Cosider f(x)=1-e^((1)/(x)-1) Q. If S is the range of f(x), then S is

    Text Solution

    |

  7. If a f(x+1)+b f(1/(x+1))=x,x !=-1,a != b,then f(2) is equal to

    Text Solution

    |

  8. If x=(1)/(1^(2))+(1)/(3^(2))+(1)/(5^(2))+ . . . y=(1)/(1^(2))+(3)/(2...

    Text Solution

    |

  9. If A is square matrix of order 2xx2 such that A^(2)=I,B=[{:(1,sqrt(2))...

    Text Solution

    |

  10. lim(n to oo) x^(2)sin(log(e)sqrt(cos((pi)/(x)))) is less then

    Text Solution

    |

  11. f is a continous function in [a, b]; g is a continuous function in [b,...

    Text Solution

    |

  12. Let f(x)="max"(1+s in x ,1,1-cosx),x in [0,2pi],a n dg(x)=max{1,|x-1|}...

    Text Solution

    |

  13. -If a,b,c in R then prove that the roots of the equation 1/(x-a)+1/(x-...

    Text Solution

    |

  14. The function 'g' defined by g(x)= sin(sin^(-1)sqrt({x}))+cos(sin^(-1)s...

    Text Solution

    |

  15. Let A and B be two square matrices satisfying A+BA^(T)=I and B+AB^(T)=...

    Text Solution

    |

  16. Let f(x)=[x][sinx]+[-x][-sinx]+x+[-x][sinx]+[x][-sinx], where [.] dent...

    Text Solution

    |

  17. Draw the graph of f(x) =cot^(-1)((2-|x|)/(2+|x|)).

    Text Solution

    |

  18. Comprehension 2 Consider the system of linear equations alphax+y...

    Text Solution

    |

  19. Let f:RtoR be defined as f(x)=(2x-3pi)^(3)+(4)/(3)x+cosx and g(x)=f^(-...

    Text Solution

    |

  20. if A[{:(5,-3),(111,336):}] and det(-3A^(2013)+A^(2014))=alpha^(alpha)+...

    Text Solution

    |