Home
Class 10
MATHS
If 9^(n)= 27^(n+1), then 2^(n)=...

If `9^(n)= 27^(n+1)`, then `2^(n)=`

A

`-(10)/(3)`

B

`-(8)/(3)`

C

`-(3)/(8)`

D

`(1)/(8)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 9^n = 27^{n+1} \) and find the value of \( 2^n \), we can follow these steps: ### Step 1: Rewrite the bases in terms of powers of 3 We know that: - \( 9 = 3^2 \) - \( 27 = 3^3 \) Thus, we can rewrite the equation as: \[ (3^2)^n = (3^3)^{n+1} \] ### Step 2: Apply the power of a power property Using the property \( (a^m)^n = a^{m \cdot n} \), we can simplify both sides: \[ 3^{2n} = 3^{3(n+1)} \] ### Step 3: Simplify the right side Now, simplify the right side: \[ 3^{2n} = 3^{3n + 3} \] ### Step 4: Set the exponents equal to each other Since the bases are the same, we can set the exponents equal to each other: \[ 2n = 3n + 3 \] ### Step 5: Solve for \( n \) Rearranging the equation gives: \[ 2n - 3n = 3 \\ -n = 3 \\ n = -3 \] ### Step 6: Find \( 2^n \) Now that we have \( n = -3 \), we can find \( 2^n \): \[ 2^n = 2^{-3} \] ### Step 7: Apply the negative exponent rule Using the rule \( a^{-m} = \frac{1}{a^m} \): \[ 2^{-3} = \frac{1}{2^3} = \frac{1}{8} \] ### Final Answer Thus, the value of \( 2^n \) is: \[ \frac{1}{8} \] ---

To solve the equation \( 9^n = 27^{n+1} \) and find the value of \( 2^n \), we can follow these steps: ### Step 1: Rewrite the bases in terms of powers of 3 We know that: - \( 9 = 3^2 \) - \( 27 = 3^3 \) Thus, we can rewrite the equation as: ...
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    KAPLAN|Exercise ALGEBRA FOLLOW - UP TEST|10 Videos
  • ADVANCED TECHINQUES FOR POLYNOMIALS AND RATIONAL EQUATIONS

    KAPLAN|Exercise Multiple Choice Question|20 Videos
  • CIRCLES

    KAPLAN|Exercise Multiple Choice Question|12 Videos

Similar Questions

Explore conceptually related problems

If .^(n)C_(10) = .^(n)C_(15) , then evaluate .^(27)C_(n) .

If\ \ sqrt(2^n)=1024 ,\ \ then 3^(2(n/4-4))= (a)3 (b) 9 (c) 27 (d) 81

STATEMENT-1 : If l_(n)=inttan^(n)xdx then 9(l_(8)+l_(10))=tan^(9)x and STATEMENT-2 : l_(n)=inttan^(n)xdx then l_(n)=(tan^(n+1)x)/(n+1)+c , n ne -1 .

If A=([x,x],[x,x]) then A^(n)(n in N)= 1) ([2^nx^n,2^nx^n],[2^nx^n,2^nx^n]) 2) ([2^(n-1) x^n,2^(n-1) x^n],[2^(n-1) x^n,2^(n-1) x^n]) 3) I 4) ([2^(n) x^(n-1),2^(n) x^(n-1)],[2^(n) x^(n-1),2^(n) x^(n-1)])

Simplify the following: (i)\ (3^n\ xx\ 9^(n+1))/(3^(n-1)\ xx\ 9^(n-1)) ,

If 3+5+9+17+33+… to n terms =2^(n+1)+n-2 , then nth term of LHS, is

If for a sequence {a_(n)},S_(n)=2n^(2)+9n , where S_(n) is the sum of n terms, the value of a_(20) is

The mean of first n odd natural numbers is (n^2)/(81) , then n= (a) 9 (b) 81 (c) 27 (d) 18

Prove that .^(n)C_(0) +5 xx .^(n)C_(1) + 9 xx .^(n)C_(2) + "…." + (4n+1) xx .^(n)C_(n) = (2m+1) 2^(n) .

If the value of "^(n)C_(0)+2*^(n)C_(1)+3*^(n)C_(2)+...+(n+1)*^(n)C_(n)=576 , then n is (a) 7 (b) 5 (c) 6 (d) 9