Home
Class 10
MATHS
If 5^(k^(2))(25^(2k))(625)=25 sqrt(5) an...

If `5^(k^(2))(25^(2k))(625)=25 sqrt(5)` and `k lt - 1`, what is the value of k ?

A

`-3.581`

B

`-3.162`

C

`-2.613`

D

`-1.581`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 5^{k^2} \cdot 25^{2k} \cdot 625 = 25 \sqrt{5} \) given that \( k < -1 \), we will follow these steps: ### Step 1: Rewrite the bases in terms of 5 We know that: - \( 25 = 5^2 \) - \( 625 = 25^2 = (5^2)^2 = 5^4 \) - \( \sqrt{5} = 5^{1/2} \) Thus, we can rewrite the equation as: \[ 5^{k^2} \cdot (5^2)^{2k} \cdot 5^4 = 5^2 \cdot 5^{1/2} \] ### Step 2: Simplify the left-hand side Now, simplify the left-hand side: \[ 5^{k^2} \cdot 5^{4k} \cdot 5^4 = 5^{k^2 + 4k + 4} \] ### Step 3: Simplify the right-hand side Now simplify the right-hand side: \[ 5^2 \cdot 5^{1/2} = 5^{2 + 1/2} = 5^{2.5} = 5^{5/2} \] ### Step 4: Set the exponents equal to each other Since the bases are the same, we can equate the exponents: \[ k^2 + 4k + 4 = \frac{5}{2} \] ### Step 5: Rearrange the equation Rearranging gives: \[ k^2 + 4k + 4 - \frac{5}{2} = 0 \] Multiplying through by 2 to eliminate the fraction: \[ 2k^2 + 8k + 8 - 5 = 0 \implies 2k^2 + 8k + 3 = 0 \] ### Step 6: Solve the quadratic equation Using the quadratic formula \( k = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 2 \), \( b = 8 \), and \( c = 3 \). \[ k = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 2 \cdot 3}}{2 \cdot 2} \] Calculating the discriminant: \[ k = \frac{-8 \pm \sqrt{64 - 24}}{4} = \frac{-8 \pm \sqrt{40}}{4} = \frac{-8 \pm 2\sqrt{10}}{4} = \frac{-4 \pm \sqrt{10}}{2} \] ### Step 7: Evaluate the two possible values for k This gives us two potential solutions: \[ k = \frac{-4 + \sqrt{10}}{2} \quad \text{and} \quad k = \frac{-4 - \sqrt{10}}{2} \] ### Step 8: Determine which solution satisfies \( k < -1 \) Calculating the approximate values: - \( \sqrt{10} \approx 3.16 \) - \( k = \frac{-4 + 3.16}{2} \approx \frac{-0.84}{2} \approx -0.42 \) (not valid since \( k \geq -1 \)) - \( k = \frac{-4 - 3.16}{2} \approx \frac{-7.16}{2} \approx -3.58 \) (valid since \( k < -1 \)) ### Final Answer Thus, the value of \( k \) is: \[ \boxed{-3.58} \]

To solve the equation \( 5^{k^2} \cdot 25^{2k} \cdot 625 = 25 \sqrt{5} \) given that \( k < -1 \), we will follow these steps: ### Step 1: Rewrite the bases in terms of 5 We know that: - \( 25 = 5^2 \) - \( 625 = 25^2 = (5^2)^2 = 5^4 \) - \( \sqrt{5} = 5^{1/2} \) ...
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    KAPLAN|Exercise ALGEBRA FOLLOW - UP TEST|10 Videos
  • ADVANCED TECHINQUES FOR POLYNOMIALS AND RATIONAL EQUATIONS

    KAPLAN|Exercise Multiple Choice Question|20 Videos
  • CIRCLES

    KAPLAN|Exercise Multiple Choice Question|12 Videos

Similar Questions

Explore conceptually related problems

If k=8sqrt(2) and (1)/(2)k=sqrt(3h) , what is the value of h?

If k (x) =5x +2, what is the vlaue of k (4) - k(1) ?

If 7^(k)=100 , what is the value of 7^((k)/(2)+1) ?

If 10^(k)=64 , what is the value of 10^((k)/(2)+1) ?

If (2)/(3)j-(1)/(4)k=(5)/(2) , what is the value of 8j-3k ?

If k=7+(8)/(k) , what is the value of k^(2)+(64)/(k^(2)) ?

If k+2, 2k-5 and k+8 are in A.P., find the value of k.

sqrt(2k^(2)+17)-x=0 If k gt 0 and x = 7 in the equation above, what is the value of k ?

If k+3, 5k-1 and 3k+2 are in A.P., find the value of k.

If the equation (k^(2)-3k +2) x^(2) + ( k^(2) -5k + 4)x + ( k^(2) -6k + 5) =0 is an identity then the value of k is