Home
Class 10
MATHS
If f(x)=t^(2)+(3)/(2)t, then f(q-1)=...

If `f(x)=t^(2)+(3)/(2)t`, then `f(q-1)=`

A

`q^(2)-(3)/(2)`

B

`q^(2)-(1)/(2)q`

C

`q^(2)+(1)/(2)q+(1)/(2)`

D

`q^(2)-(1)/(2)q-(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( f(x) = t^2 + \frac{3}{2}t \) at \( t = q - 1 \). ### Step-by-Step Solution: 1. **Substitute \( t \) with \( q - 1 \)**: \[ f(q - 1) = (q - 1)^2 + \frac{3}{2}(q - 1) \] 2. **Expand \( (q - 1)^2 \)**: \[ (q - 1)^2 = q^2 - 2q + 1 \] 3. **Expand \( \frac{3}{2}(q - 1) \)**: \[ \frac{3}{2}(q - 1) = \frac{3}{2}q - \frac{3}{2} \] 4. **Combine the results**: \[ f(q - 1) = (q^2 - 2q + 1) + \left(\frac{3}{2}q - \frac{3}{2}\right) \] 5. **Combine like terms**: - Combine \( -2q \) and \( \frac{3}{2}q \): \[ -2q + \frac{3}{2}q = -\frac{4}{2}q + \frac{3}{2}q = -\frac{1}{2}q \] - Combine the constant terms \( 1 \) and \( -\frac{3}{2} \): \[ 1 - \frac{3}{2} = \frac{2}{2} - \frac{3}{2} = -\frac{1}{2} \] 6. **Final expression**: \[ f(q - 1) = q^2 - \frac{1}{2}q - \frac{1}{2} \] ### Conclusion: Thus, the value of \( f(q - 1) \) is: \[ f(q - 1) = q^2 - \frac{1}{2}q - \frac{1}{2} \]

To solve the problem, we need to evaluate the function \( f(x) = t^2 + \frac{3}{2}t \) at \( t = q - 1 \). ### Step-by-Step Solution: 1. **Substitute \( t \) with \( q - 1 \)**: \[ f(q - 1) = (q - 1)^2 + \frac{3}{2}(q - 1) \] ...
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    KAPLAN|Exercise FUNCTIONS FOLLOW - UP TEST|6 Videos
  • EXPONENTS, RADICALS, POLYNOMIALS, AND RATIONAL EXPRESSIONS

    KAPLAN|Exercise Multiple Choice Question|20 Videos
  • FUNCTIONS AND FUNCTION NOTATION

    KAPLAN|Exercise Multiple Choice Question|20 Videos

Similar Questions

Explore conceptually related problems

If f(x)=3-2x+x^(2) , then ((f(x+t)-f(x))/(t)) =

Let f(x) be a differentiable function such that int_(t)^(t^(2))xf(x)dx=(4)/(3)t^(3)-(4t)/(3)AA t ge0 , then f(1) is equal to

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

If lim_(trarrx)(e^(t)f(x)-e^(x)f(t))/((t-x)(f(x))^(2))=2 andf(0)=(1)/(2), then find the value of f'(0).

If lim_(trarrx) (e^(t)f(x)-e^(x)f(t))/((t-x)(f(x))^(2))=2 andf(0)=(1)/(2), then find the value of f'(0).

If F(x)=int_(1)^(x) f(t) dt ,where f(t)=int_(1)^(t^(2))(sqrt(1+u^(4)))/(u) du , then the value of F''(2) equals to

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

If f(x)=int_(x^2)^(x^2+1)e^(-t^2)dt , then f(x) increases in

If f(x)=lim_(t to 0)[(2x)/(pi).tan^(-1)(x/(t^(2)))] ,then f(1) is …….

If f(x)=x+int_0^1t(x+t)f(t) dt ,then the value of 23/2f(0) is equal to _________