Home
Class 10
MATHS
If h(x) = sqrt(x^(2)+x-4) and g(x)=sqrt(...

If `h(x) = sqrt(x^(2)+x-4)` and `g(x)=sqrt(5x)`, what is the value of `h(g(6))` ?

A

`5.48`

B

`5.55`

C

`5.61`

D

`5.83`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( h(g(6)) \) where \( h(x) = \sqrt{x^2 + x - 4} \) and \( g(x) = \sqrt{5x} \), we will follow these steps: ### Step 1: Calculate \( g(6) \) We start by substituting \( x = 6 \) into the function \( g(x) \). \[ g(6) = \sqrt{5 \cdot 6} = \sqrt{30} \] ### Step 2: Substitute \( g(6) \) into \( h(x) \) Now, we need to find \( h(g(6)) \), which is \( h(\sqrt{30}) \). \[ h(\sqrt{30}) = \sqrt{(\sqrt{30})^2 + \sqrt{30} - 4} \] ### Step 3: Simplify the expression inside \( h \) Calculating \( (\sqrt{30})^2 \): \[ (\sqrt{30})^2 = 30 \] Now substituting this back into the expression for \( h(\sqrt{30}) \): \[ h(\sqrt{30}) = \sqrt{30 + \sqrt{30} - 4} \] ### Step 4: Combine the terms Now, simplify the expression: \[ h(\sqrt{30}) = \sqrt{30 - 4 + \sqrt{30}} = \sqrt{26 + \sqrt{30}} \] ### Step 5: Calculate \( \sqrt{30} \) and then \( h(g(6)) \) Using a calculator, we find \( \sqrt{30} \approx 5.477 \). Now substituting this value back into the expression: \[ h(g(6)) = \sqrt{26 + 5.477} = \sqrt{31.477} \] ### Step 6: Calculate \( \sqrt{31.477} \) Using a calculator again, we find: \[ \sqrt{31.477} \approx 5.61 \] Thus, the value of \( h(g(6)) \) is approximately \( 5.61 \). ### Final Answer \[ h(g(6)) \approx 5.61 \]

To find the value of \( h(g(6)) \) where \( h(x) = \sqrt{x^2 + x - 4} \) and \( g(x) = \sqrt{5x} \), we will follow these steps: ### Step 1: Calculate \( g(6) \) We start by substituting \( x = 6 \) into the function \( g(x) \). \[ g(6) = \sqrt{5 \cdot 6} = \sqrt{30} \] ...
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    KAPLAN|Exercise FUNCTIONS FOLLOW - UP TEST|6 Videos
  • EXPONENTS, RADICALS, POLYNOMIALS, AND RATIONAL EXPRESSIONS

    KAPLAN|Exercise Multiple Choice Question|20 Videos
  • FUNCTIONS AND FUNCTION NOTATION

    KAPLAN|Exercise Multiple Choice Question|20 Videos

Similar Questions

Explore conceptually related problems

If f(x) = x^(2) + x + 5 and g(x) = sqrt(x) , then what is the value of (g(4))/(f(1)) ?

If f(x)=sqrt(x^(2)-3x+6) and g(x)=(156)/(x+17) , then what is the value of g(f(4)) ?

If f(x)=x-7 and g(x)=sqrt(x) , what is the domain of g@f ?

If g(x) = 3x + sqrt(x) , what is the value of g(d^2 + 6d + 9) ?

If a=5sqrt2 and 2a=sqrt(2x) , what is the value of x ?

Given that f(x) = 4 x ^2 and g (x) =3-(x)/(2) , what is the value of f(g(4)) ?

Given g(x)=4x^2 -8x+2 , what is the value of g(-5) ?

Suppose f and g are two functions such that f,g: R -> R f(x)=ln(1+sqrt(1+x^2)) and g(x)=ln(x+sqrt(1+x^2)) then find the value of xe^(g(x))f(1/x)+g'(x) at x=1

If g(x)=(x^(2)-4)/(x+2) and a=-5 , what is the value of |g(a)| ?

If f(x) = sqrt(2-x) and g(x) = sqrt(1-2x) , then the domain of fog (x) is