Home
Class 10
MATHS
If f(x)=(1)/(3)x + 3, then f^(-1)(x)=...

If `f(x)=(1)/(3)x + 3`, then `f^(-1)(x)=`

A

`-(1)/(3)x-3`

B

`-3x+(1)/(3)`

C

`3x+(1)/(3)`

D

`3x-9`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the function \( f(x) = \frac{1}{3}x + 3 \), we will follow these steps: ### Step 1: Set \( f(x) \) equal to \( y \) We start by letting \( y = f(x) \): \[ y = \frac{1}{3}x + 3 \] ### Step 2: Solve for \( x \) in terms of \( y \) Next, we need to rearrange the equation to express \( x \) in terms of \( y \). First, we will isolate the term involving \( x \): \[ y - 3 = \frac{1}{3}x \] ### Step 3: Eliminate the fraction To eliminate the fraction, multiply both sides by 3: \[ 3(y - 3) = x \] This simplifies to: \[ x = 3y - 9 \] ### Step 4: Write the inverse function Now that we have \( x \) in terms of \( y \), we can express the inverse function. We replace \( y \) with \( x \) and \( x \) with \( f^{-1}(x) \): \[ f^{-1}(x) = 3x - 9 \] ### Final Answer Thus, the inverse function is: \[ f^{-1}(x) = 3x - 9 \] ---

To find the inverse of the function \( f(x) = \frac{1}{3}x + 3 \), we will follow these steps: ### Step 1: Set \( f(x) \) equal to \( y \) We start by letting \( y = f(x) \): \[ y = \frac{1}{3}x + 3 \] ...
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    KAPLAN|Exercise FUNCTIONS FOLLOW - UP TEST|6 Videos
  • EXPONENTS, RADICALS, POLYNOMIALS, AND RATIONAL EXPRESSIONS

    KAPLAN|Exercise Multiple Choice Question|20 Videos
  • FUNCTIONS AND FUNCTION NOTATION

    KAPLAN|Exercise Multiple Choice Question|20 Videos

Similar Questions

Explore conceptually related problems

If f(x) = [4-(x-7)^(3)], then f^(-1)(x)= ………… .

Let f : [-1, -1/2] rarr [-1, 1] is defined by f(x)=4x^(3)-3x , then f^(-1) (x) is

If f : R - {1} rarr R, f(x) = (x-3)/(x+1) , then f^(-1) (x) equals

If f(x)=(x-1)/(x+1) , then f(f(a x)) in terms of f(x) is equal to (a)(f(x)-1)/(a(f(x)-1)) (b) (f(x)+1)/(a(f(x)-1)) (f(x)-1)/(a(f(x)+1)) (d) (f(x)+1)/(a(f(x)+1))

If f(x)=(2x)/(5)+(7)/(3), f^(-1)(x)=

If f(x)=x+(1)/(x) , such that f^3 (x)=f(x^(3))+lambdaf((1)/(x)) , then lambda=

Let f: R-{3/5}->R be defined by f(x)=(3x+2)/(5x-3) . Then (a).f^-1(x)=f(x). (b).f-1(x)= -f(x). (c). (fof)=x (d). f-1(x)=(1/19)f(x)

Statement -1: f(x) = (1)/(2)(3^(x) + 3^(-x)) , then f(x) ge 1 AA x in R . Statement -2 : The domain of f(x) = log_(3)|x| + sqrt(x^(2) - 1) + (1)/(|x|) is R - [-1, 1]. Statement-3 : If f(x^(2) - 2x + 3) = x-1 , then f(2) + f(0) is euqal to -2.

If f(x)= {4 - (x-7)^(3)} , then find f^(-1)(x)=

Let f: RvecRf(x)=x^3-3x^2+3x-2, then f^(-1)(x) is given by 1+(x+1)^(1/3) (2) 1+(x-1)^(1/3) x+1 3-1 (4) x-1 3-1