Home
Class 10
MATHS
If f(x)=2x^(3) and g(x)=3x, what is the ...

If `f(x)=2x^(3)` and `g(x)=3x`, what is the value of `g(f(-2))-f(g(-2))` ?

A

`-480`

B

`-384`

C

0

D

384

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( g(f(-2)) - f(g(-2)) \) given the functions \( f(x) = 2x^3 \) and \( g(x) = 3x \). ### Step 1: Calculate \( f(-2) \) Using the function \( f(x) = 2x^3 \): \[ f(-2) = 2(-2)^3 \] Calculating \( (-2)^3 \): \[ (-2)^3 = -8 \] Now substituting back: \[ f(-2) = 2 \times -8 = -16 \] ### Step 2: Calculate \( g(f(-2)) \) Now we need to find \( g(f(-2)) \), which is \( g(-16) \): Using the function \( g(x) = 3x \): \[ g(-16) = 3 \times -16 \] Calculating this: \[ g(-16) = -48 \] ### Step 3: Calculate \( g(-2) \) Next, we calculate \( g(-2) \): \[ g(-2) = 3 \times -2 \] Calculating this: \[ g(-2) = -6 \] ### Step 4: Calculate \( f(g(-2)) \) Now we need to find \( f(g(-2)) \), which is \( f(-6) \): Using the function \( f(x) = 2x^3 \): \[ f(-6) = 2(-6)^3 \] Calculating \( (-6)^3 \): \[ (-6)^3 = -216 \] Now substituting back: \[ f(-6) = 2 \times -216 = -432 \] ### Step 5: Calculate \( g(f(-2)) - f(g(-2)) \) Now we can find the final result: \[ g(f(-2)) - f(g(-2)) = -48 - (-432) \] This simplifies to: \[ -48 + 432 = 384 \] Thus, the final answer is: \[ \boxed{384} \]

To solve the problem, we need to find the value of \( g(f(-2)) - f(g(-2)) \) given the functions \( f(x) = 2x^3 \) and \( g(x) = 3x \). ### Step 1: Calculate \( f(-2) \) Using the function \( f(x) = 2x^3 \): \[ f(-2) = 2(-2)^3 ...
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    KAPLAN|Exercise FUNCTIONS FOLLOW - UP TEST|6 Videos
  • EXPONENTS, RADICALS, POLYNOMIALS, AND RATIONAL EXPRESSIONS

    KAPLAN|Exercise Multiple Choice Question|20 Videos
  • FUNCTIONS AND FUNCTION NOTATION

    KAPLAN|Exercise Multiple Choice Question|20 Videos

Similar Questions

Explore conceptually related problems

If f(x)=2x^(2)-4 and g(x)=2^(x) , the value of g(f(1)) is

Given that f(x) = 4 x ^2 and g (x) =3-(x)/(2) , what is the value of f(g(4)) ?

Given functions f(x) = 2x + 1 and g(x) = x^(2) - 4 , what is the value of f(g(-3)) ?

If f(x+2)=3x+11 and g(f(x))=2x, find the value of g(5).

Given that f(x) = 3x + 7 and g(x) = (x^2)/(2) , what is the value of f(g(4)) ?

f(x)=x+4 g(x)=6-x^(2) What is the maximum value of g(f(x)) ?

If f(x) = x^(2) + x + 5 and g(x) = sqrt(x) , then what is the value of (g(4))/(f(1)) ?

If f(x)=sqrt(x^(2)-3x+6) and g(x)=(156)/(x+17) , then what is the value of g(f(4)) ?

If f(x) = x^(2) and g(x) = Ixl then find the values of: (i) f+g, (ii) f-g, (iii) fg, (iv) 2f, (v) f^(2) , (vi) f+3

If f(x) = x^(2) and g(x) = (1)/(x^(3)) . Then the value of (f(x)+g(x))/(f(-x)-g(-x)) at x = 2 is