Home
Class 10
MATHS
lim(x to 3)(x^(3)+x^(2)-12x)/(x^(2)-9)=...

`lim_(x to 3)(x^(3)+x^(2)-12x)/(x^(2)-9)=`

A

`-7`

B

`-(7)/(2)`

C

0

D

`(7)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 3} \frac{x^3 + x^2 - 12x}{x^2 - 9} \), we can follow these steps: ### Step 1: Factor the numerator and denominator First, we need to factor both the numerator and the denominator. The denominator \( x^2 - 9 \) can be factored as: \[ x^2 - 9 = (x - 3)(x + 3) \] Now, let's factor the numerator \( x^3 + x^2 - 12x \): \[ x^3 + x^2 - 12x = x(x^2 + x - 12) \] Next, we factor \( x^2 + x - 12 \). We need two numbers that multiply to \(-12\) and add to \(1\). These numbers are \(4\) and \(-3\): \[ x^2 + x - 12 = (x + 4)(x - 3) \] Thus, the numerator can be rewritten as: \[ x^3 + x^2 - 12x = x(x + 4)(x - 3) \] ### Step 2: Rewrite the limit Now we can rewrite the limit: \[ \lim_{x \to 3} \frac{x(x + 4)(x - 3)}{(x - 3)(x + 3)} \] ### Step 3: Cancel common factors We can cancel the common factor \( (x - 3) \) from the numerator and denominator (as long as \( x \neq 3 \)): \[ \lim_{x \to 3} \frac{x(x + 4)}{x + 3} \] ### Step 4: Substitute \( x = 3 \) Now we can substitute \( x = 3 \) into the simplified expression: \[ \frac{3(3 + 4)}{3 + 3} = \frac{3 \cdot 7}{6} = \frac{21}{6} = \frac{7}{2} \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 3} \frac{x^3 + x^2 - 12x}{x^2 - 9} = \frac{7}{2} \]

To solve the limit \( \lim_{x \to 3} \frac{x^3 + x^2 - 12x}{x^2 - 9} \), we can follow these steps: ### Step 1: Factor the numerator and denominator First, we need to factor both the numerator and the denominator. The denominator \( x^2 - 9 \) can be factored as: \[ x^2 - 9 = (x - 3)(x + 3) ...
Promotional Banner

Topper's Solved these Questions

  • MISCELLANEOUS TOPICS

    KAPLAN|Exercise MISCELLANEOUS TOPICS FOLLOW - UP TEST|12 Videos
  • MATH TEST-01

    KAPLAN|Exercise Multiple Choice Question|20 Videos
  • PLANE GEOMETRY

    KAPLAN|Exercise PLANE GEOMETRY FOLLOW - UP TEST|6 Videos

Similar Questions

Explore conceptually related problems

If lim_(xto3)(x^(3)+cx^(2)+5x+12)/(x^(2)-7x+12)=l (finite real number), ten

Evaluate lim_(x to 3) (x^(2) - 10x + 21)/(x^(2) - 9)

Evaluate lim_(x to 2) (x^(3) - 3x^(2) + 4)/(x^(4) - 8x^(2) + 16)

Evaluate, lim_(x to 2) (x^(3) - 8)/(x^(2) - 4)

lim_(x to 2) (x^(3) + x^(2) + 4x + 12)/(x^(3) - 3x + 2) is equal to

Evaluate lim_(x to 3) (x^(3) - 7x^(2) + 15x - 9)/(x^(4) - 5x^(3) + 27 x - 27)

Evaluate the following limits : Lim_(xto3) (x^(3)-8x^(2)+45)/(2x^(2)-3x-9)

Evaluate the following limits : Lim_(x to 3) (x^(5) -243)/(x^(2)-9)

Evaluate the following limits : Lim_(x to 9 ) (x^(3//2)-27)/(x-9)

lim_(xrarr3) (x^(2)+x-12)/(x^(2)-2x-3)